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Abstract— The increasing frequency of extreme events and
the integration of distributed energy resources (DERs) into
modern grids have elevated the need for resilient and effi-
cient critical load restoration strategies in distribution systems.
However, the stochastic nature of renewable DERs, limited
energy resource availability and the intricate nonlinearities
inherent in complex grid control problem make the prob-
lem challenging. Although reinforcement learning (RL) and
warm-start RL methods have shown promising results, their
performance often falls short in rapidly adapting to new,
unseen situations and typically requires exhaustive problem-
specific tuning. To address these gaps, we propose a First-
Order Meta-based RL (FOM-RL) algorithm within an online
framework for adaptive and robust critical load restoration. By
harnessing local DERs as the enabling technology, FOM-RL
allows the RL agent to swiftly adapt to new unseen scenarios
by leveraging previously acquired knowledge of different tasks.
Experimental results provide evidence that proposed algorithm
learns more efficiently and showcases generalization capabil-
ities across diverse set of operational scenarios. Moreover, a
rigorous theoretical analysis yields a tight sublinear regret
bound, sensitive to temporal variability, with a task-averaged
optimality gap bounded by O

(
VM+D∗
√
TM

)
. These results suggest

that optimality improves with task similarity and an increased
number of tasks M , reaffirming the efficacy and scalability of
the proposed approach in addressing the complexities of critical
load restoration in distribution systems.

I. INTRODUCTION

The availability of reliable and quality electricity is an
essential requirement for the smooth functioning of our
technologically driven society. However, unforeseen events
such as natural disasters, equipment failures, or cyber-
attacks can lead to large-scale blackouts [1]–[3]. In such
scenarios, the restoration of power to the critical loads –
sectors where power interruption may cause catastrophic
consequences for the security, society, and economy – is
of utmost importance [4], [5]. However, the critical load
restoration (CLR) problem in power systems is fraught with
complexity, involving considerations such as load prioriti-
zation, generation capacity, and network constraints. These
complexities necessitate the exploration of novel methodolo-
gies that are adaptive, efficient, and effective in providing
optimal solutions for the CLR problem.

Traditional methods for solving the CLR problem, such
as optimization-based algorithms [6], heuristic methods [7],
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and deterministic techniques [8], have been widely used and
have their merits. However, they may face challenges in
handling the dynamic and non-linear nature of the power
system during emergencies [9]. Strategies like DERs and
microgrids [10], as well as methods that treat CLR as chance-
constrained stochastic programming [11] or model predictive
control (MPC) [8], have shown promise, but may need
further adaptations to effectively handle the evolving context
of climate-change-induced extreme events [12].

Reinforcement learning has emerged as a complementary
approach to optimization-based methods, offering the ability
to learn optimal policies from interactions with the dynam-
ically changing environment [13], [14]. RL adaptability to
non-linear and dynamic systems, without being restricted to
specific model requirements, makes it a potentially powerful
tool for the CLR problem [15]. However, the efficiency
of model-free RL approaches in evolving contexts is an
area that requires further investigation [12]. RL approaches
face challenges due to the non-convex nature of the policy
optimization landscape and the data-intensive training pro-
cess. Techniques like curriculum-based RL [13], have been
proposed to streamline the training process and enhance effi-
ciency of RL agent training for CLR problems. While these
methods have shown improvements, there is still room for
further advancements in policy fine-tuning and generalization
to new scenarios.

Meta-RL algorithms, aim to create a generalized poli-
cies that can quickly adapt to new tasks [19], [20].
However, traditional Meta-RL frameworks like Model-
Agnostic Meta-Learning are computationally demanding
because they require second-order derivatives to update
the Meta-parameters. These updates, necessitating Hessian
matrix computations, can hinder efficiency by amplifying
computational costs, especially when faced with the need
for numerous gradient steps during the test phase. To ad-
dress these limitations, we introduce a First-Order Meta-RL
framework [25], combined with Evolution-Strategy RL (ES-
RL) [22], which simplifies the learning process by avoid-
ing complex Hessian computations and employing gradient
averaging. Gradient averaging involves updating the model
parameters by averaging the first-order gradients obtained
from task-specific optimizations, which significantly reduces
the variability and instability in updates. This method not
only curtails computational demands but also boosts general-
ization and adaptability, making it suitable for CLR problem.

Contribution: The key contributions of this study can be
summarized as follows:

• A FOM-RL within-online framework is introduced to



expedite the training of the CLR controller, thereby
aiding it in converging to a more robust control policy
and adaptable to a variety of tasks.

• We show that the tasks averaged regret for optimality
gap decay sublinearly with respect to both the number
of tasks M and steps T . Specifically we establish the
bound of order O

(
VM+D∗
√
TM

)
.

The structure of paper is organized as follows: In Section
II, we present the formulation of the CLR problem. Section
III elaborates on our proposed FOM-RL strategy designed
for tackling the CLR problem. Theoretical analysis and
regret bounds are the focus of Section IV, while Section V
offers case study results to substantiate our approach. Lastly,
Section VI concludes the paper with potential directions for
future research.

II. PROBLEM FORMULATION

A. Critical Loads Restoration Problem
In this paper, we examine multi-step prioritized CLR

problem when a distribution system is isolated from the main
grid. The objective is to optimize the restoration of priori-
tized critical loads to enhance system resilience throughout
the outage, over discrete time intervals denoted by T =
{1, 2, . . . , T}, using local DERs. Available DERs catego-
rized into: dispatchable fuel-based (Df ), dispatchable battery
storage energy (Ds), and renewable-based energy (R). The
vector ς = [ς1, ς2, . . . , ςN ]⊤ ∈ RN represents N = |L| loads
priority factors, and ςi determines the priority of critical
loads i ∈ L in the system. At each control step t ∈ T ,
the controller establishes the active power set pG

t ∈ R|G|,
and power factor angles αG

t ∈ R|G| for all DERs (i.e. G=R∪
Df ∪ Ds). Concurrently, the controller defines the restored
power levels for each critical load in terms of both active and
reactive power, represented as pt = [p1t , p

2
t , . . . , p

N
t ]⊤ ∈ RN

and qt = [q1t , q
2
t , . . . , q

N
t ]⊤ ∈ RN . The objective is to

optimize control function, as outlined in [13]:∑
t∈T

(
ς⊤pt − µς⊤[pt−1 − pt]

+ + νt
)

(1)

where, νt := −λ∥[νt − ν̄]+ + [ν − νt]
+∥22 represents the

penalty for single step voltage violation across all Nb buses.
Here, νt ∈ RNb denotes the vector of bus voltage magnitudes
at time t, ν = V min1Nb

∈ RNb , and ν̄ = V max1Nb
∈ RNb ,

represent the lower and upper voltage limits, respectively.The
coefficient λ, encourages maintaining bus voltages to be
within limits. It is worth noting that voltage bounds are in-
cluded as a penalty term, as they represent system-controlled
outcomes that can not be directly constrained within the
framework of RL. The second term in (1) penalizes frequent
load restoration and shedding by factor µ to provide a reliable
and monotonic load restoration, thus mitigating the impact
of fluctuating renewable energy sources. The first term, ς⊤pt

aims to optimize load restoration over time based on priority
rankings, thereby enhancing the resilience of the system.

To optimize the objective function (1), certain operational
constraints must be met for each time step t ∈ T . Con-
straint (2) specifies the permissible power output ranges

for micro-turbines, dictated by fuel availability; where, τ
is the control interval and Eg is the known fuel reserve
limit. Battery energy constraints (3)-(5) cover state of charge
(SOC) bounds and charge/discharge rates, incorporating stor-
age efficiency ηt, taking values based on whether the battery
is charging ηt = ηch

(
i.e., pθt > 0

)
or discharging ηt =

1
ηdis

(
i.e., pθt < 0

)
. Sθ

t and s0 are the current and initial SOC.
Renewable-based DER constraints are articulated in (6),
where, p̂rt is the fluctuating renewable energy influenced by
natural conditions and prioritized for use during restoration.
Notably, the symbol ·̂ signifies forecasted values. Finally, (7)
delineates the feasible options for load restoration decisions.

pgt ∈ [pg, p̄g], αg
t ∈ [αg, ᾱg],

∑
t∈T

pgt .τ ≤ Eg (2)

−pθ,ch ≤ pθt ≤ pθ,dis (3)

Sθ
t+1 = Sθ

t − ηt · pθt · τ, Sθ
0 = s0 (4)

Sθ ≤ Sθ
t ≤ S̄θ, ∀ θ ∈ Ds (5)

prt = p̂rt , αr
t ∈ [αr, ᾱr] , ∀r ∈ R (6)

0 ≤ pt ≤ p (7)

Integrating both the objective function and associated con-
straints, the optimal control problem for distribution system
restoration is defined as:

maximizept,qt,p
G
t ,αG

t ,∀t∈T (1)

subject to∀t∈T (2) − (7)
(8)

The problem (8) is framed as a Mixed-Integer Linear Pro-
gramming (MILP). The existing methodologies for solving
the MILP formulation of CLR problem includes like No
Reserve MPC (NR-MPC) [8] and Reserve Considered MPC
(RC-MPC) [27]. NR-MPC iteratively solves the MILP in
a receding horizon manner, updating with new renewable
forecasts, while RC-MPC incorporates a penalty for gen-
eration reserve to hedge against renewable forecast errors,
enhancing robustness. However, these MILP solutions face
limitations such as computational complexity, poor scalabil-
ity in dynamic environments, and the inherent rigidity of
linear programming which struggles with variable conditions.
To address these challenges, in the subsequent sections III,
we introduce a Meta-RL strategy. This approach leverages
learning-based methods to adaptively handle the complex-
ities associated with the CLR problem, including handling
variability in DER outputs and operational uncertainties.

B. Sequence of CLR Problems

In the context of Meta-learning, we consider a sequence of
CLR problems, indexed by m = 1, . . . ,M . Each problem in
the sequence represents a distinct environment or scenario,
driven by varying parameters such as critical load demands
(p(m),q(m)). These variations create a diverse set of CLR
problems, each reflecting unique operational challenges. The
goal of Meta-learning is to learn a policy that can quickly
adapt to new CLR problems drawn from sequence, by



leveraging the experience gained from solving previous prob-
lems. This formulation allows us to study the adaptability
and generalization capabilities of the proposed methods in
the face of varying environmental conditions and problem
parameters.

Simulation and Evaluation: To evaluate the proposed
methods for the CLR problem, we conduct simulations based
on the following setup: 1) The demand for each critical
loads L, represented as (p = [p1, . . . , pN ]⊤ ∈ RN and q =
[q1, . . . , qN ]⊤ ∈ RN ), is assumed to stay constant over the
course of the outage, with partial restoration allowed at each
time step. 2) Generation from photovoltaic (PV) and wind
turbines can be forecasted, although these forecasts are not
entirely precise, thereby providing a realistic model. 3)The
simulations focus on the steady-state dispatch of DERs and
load restoration decisions, neglecting the transient dynamics
of the distribution system. 4) At the initial time step, the
distribution network is assumed to be re-energized, recon-
figured, and DERs are synchronized, with a stable topology
throughout the restoration period. This assumption allows us
to focus on the scheduling of DERs after the reconfiguration
is complete but may not capture the full complexity of the
restoration process.

III. META RL FOR SEQUENTIAL CLR
In this section, we present how to use the FOM-RL

algorithm to solve the above mentioned optimal control
problem (8). This necessitate to reformulate the problem (8)
into RL Markov decision process (MDP), and then show how
to use FOM-RL to efficiently train a CLR controller.

A. CLR in RL Framework

Reformulating the optimal control problem (8) as a MDP
allows us to leverage the powerful framework of RL to
learn optimal control policies through interactions with the
environment. This reformulation enables us to effectively
handle the complexities, uncertainties, and sequential nature
of the CLR problem, and develop adaptive control strategies
that can generalize to new scenarios. State, action and reward
are the key elements of MDP corresponding to the optimal
control problem defined below.

State (S): The state st ∈ S serve as the input to the policy
for decision-making at each control step. It reflects system
status at the current step and defined as:

st :=
[
(p̂rt )

⊤
,
(
p̃t−1

)⊤
,
(
Sθ
t

)⊤
, (Eµ

t )
⊤
, t
]⊤

∈ S,

where, p̂rt is the renewable generation for the next hour,
p̃t−1 := diag {p}−1 pt−1 ∈ RN shows the fractional load
restoration level. Sθ

t is the state of charge, and Eµ
t denotes

the fuel available for the micro-turbine, which indicates its
residual capacity to support load. t represents the current
time step index to inform progress.

Action (A) : At each control step t ∈ T , the action at
encapsulate the strategic decisions based on the current state
determined by the RL policy π : S → ∆(A) parametrized by
ϕ i.e., at = π(st;ϕ). We use ∆(A)|S| to denote the simplex
over all states. Specifically, at, is responsible for determining

both the quantity of load to be restored and the active/reactive
power outputs from selected DERs at each time step t, and
formally defined as:

at :=
[
(pt)

⊤
,
(
HppG

t

)⊤
,
(
Hαα

G
t

)⊤] ∈ A,

where, Hp ∈ R(|Df |+Ds|−1)×|G| and Hα ∈ R(|G−1|)×|G| are
selection matrices highlight the control over both the active
power output from dispatchable DERs and the reactive power
from all DERs. Here, pt denotes the decision regarding the
amount of load to restore, illustrating a targeted approach in
managing the dynamic nature of grid restoration and DERs
management.

Reward: rt serves as a scalar evaluation (i.e., rt =
R(st, at)) of the control action at, based on the state st.
Corresponding to (1), the reward is defined as rt = ς⊤pt −
µς⊤[pt−1−pt]

++νt, and is computed using the simulation
outcomes at t.

Within-task RL Training: In essence, the aim of RL agent
is to find an optimal control policy π∗, which maximizes
the expected total reward F (ϕ) = Eπ(st;ϕ)

(∑
t∈T rt

)
, over

control horizon t ∈ T . In our model, a neural network
is used as the policy network. Policy gradient based RL
algorithms updates policy parameters via gradient ascent,
necessitating the computation of the gradient ∇ϕF (ϕ). A
significant challenge in RL is the absence or inaccessibility
of derivatives for the environment or policy functions. To
circumvent the limitations of gradient-based estimation, we
implements ES-RL, a gradient free optimization algorithm.
ES-RL uses a population distribution Xφ, modeled as an
isotropic Gaussian with mean φ and fixed covariance σ2I .
This allow to write Eϕ∼Xφ

F (ϕ)=Eϵ∼N(0,I)F (ϕ+σϵ), facil-
itating optimization directly over parameter ϕ using gradient
ascent with the score function estimator: ∇ϕEϵ∼N(0,I)F (ϕ+
σϵ) = 1

σEϵ∼N(0,I)F (ϕ+ σϵ)ϵ.
Unlike gradient-based RL methods such as PPO [23],

TRPO [21], and DDPG [24], that follow the gradient of the
expected reward, which can get ensnared by local maxima,
ES-RL leverages a global search heuristic due to its stochas-
tic nature. It has the ability to maintain and explore a diverse
set of solutions, which increases the probability of escaping
local optima.

B. Proposed FOM-RL Framework

The FOM-RL algorithm consists of two main stages:
Meta-training and Meta-testing. During Meta-training, the
algorithm aims to learn an initialization for the policy pa-
rameters that can quickly adapt to new tasks with minimal
fine-tuning. This is achieved by exposing the algorithm to
a diverse set of training tasks, each representing a different
CLR problem.

For each task m, the policy parameters are initialized with
the current Meta-parameters ϕm,0 and then fine-tuned using
ES-RL for a fixed number of iterations T . This within-
task training allows the policy to adapt to the specific
characteristics of each task. The Meta-parameters are then
updated based on the cumulative performance across all



tasks, using a first-order approximation of the Meta-gradient
as in [25]. This Meta-update step allows the algorithm to
accumulate knowledge across tasks and learn a generalized
initialization ϕ̂m,j , that can rapidly adapt to new tasks.

In the Meta-testing stage, the learned Meta-
parameters ϕ̂m,j serve as an initialization for the policy
when faced with a new, unseen CLR problem. The policy
is then fine-tuned using ES-RL for a small number of
iterations, leveraging the knowledge gained during Meta-
training to quickly adapt to the specific challenges of the
new task.

The key steps of the FOM-RL algorithm, as outlined in
Algorithm 1, provide a high-level overview of the process.
The two-level structure of the FOM-RL algorithm, with ES-
RL for within-task training and FOM-RL for across-task
adaptation, offers several benefits. It allows the algorithm
to leverage the strengths of ES-RL, such as its resilience to
local optima and ability to maintain a diverse set of solutions,
while also enabling fast adaptation to new tasks through
the Meta-learning process. This combination of robustness,
adaptability, and generalization makes the proposed approach
well-suited for tackling the challenges of the CLR problem
in various scenarios.

Algorithm 1: FOM-RL
Input: A set of M tasks for Meta-training, number of

iterations T , learning rate α for task-specific
training, Meta-stepsize ϵ.

Output: Meta-policy πM and optimal policy π̂M .
1 Function Train():
2 Initialize random policy π1,0 with parameters ϕ1,0

3 for each task (m = 1, . . . ,M) do
4 Load initial policy with parameter ϕm,0 for task m

5 for iteration (j = 1, . . . , T ) do
6 Update policy using ES-RL
7 Save the best model π̂m,j and model

parameter ϕ̂m,j

8 Meta-update:
ϕm+1,0 ← ϕm,0 +

ϵ
M

∑M
m=1(ϕ̂m,j − ϕm,0)

9 Save Meta-policy πM = π̂M,j

10 Function Testing():
11 Load Meta-policy πM

12 Fine-tune Meta-policy at test time on the new unseen
task to receive the optimal policy π̂M

IV. REGRET BOUND FOR META-RL WITHIN-ONLINE
FRAMEWORK

In this section, we present the theoretical analysis of the
proposed algorithm. We examine MDPs where RL tasks
emerge sequentially, indexed by m = 1, . . . ,M . In each
task m, the agent is required to iteratively refine the policy
parameter {ϕm,j}Tj=0 over T steps using ES-RL algorithm
to receive suboptimal policy parameters ϕ̂m,T . The following
theorem provide convergence guarantees to ES-RL.

Theorem 4.1 (Theorem 6; [18]): Suppose ES-RL policy
update for each task m, perform T = 4(N+4)2L2R2

ϵ2 iterations
with learning rate αm= R

(N+4)(T+1)1/2L
to optimize objective

function Fm(·). For σ ≤ ϵ
2LN1/2 , then the sub-optimality gap

for each task m is bounded by;

E
[
Fm

(
ϕ̂m,T

)]
− Fm (ϕ∗

m) ≤ 2(N + 4)L∥ϕ∗
m − ϕm,0∥

T 1/2
,

(9)
where ϕ∗

m are the parameters of optimal policy π∗
m, R being

the bound of ∥ϕ∗
m − ϕm,0∥ ≤ R.

We can observe from (9), that the regret bound is depending
on the parameters of the policy initialization. Beyond the
single task, Meta-algorithm aims to sequentially update the
initial policy πm,0 with parameters ϕm,0. Therefore, we aim
to minimize the task average optimality gap (TAOG). In
Meta-RL, the extent to which TAOG improves is influenced
by the similarity among the sequential MDP tasks [20]. For
any fixed initial policies parameters {ϕ}, the task similarity

can be measured by D∗ = minϕ∈∆(A)|S|
1
M

M∑
m=1

∥ϕ∗
m − ϕ∥.

The following theorem shows the TAOG for the proposed
MDP-within-online framework.

Theorem 4.2 (Task Average Optimality Gap): Let the ini-
tial parameters {ϕm,0}Mm=0 for each task determined by
follow the average leader. For each task we train the policy

for T steps with learning rate α and obtain
{
ϕ̂m,T

}M

m=1
.

Let ϕ∗
m is the optimal Meta initialization for each task, then

the task average optimality gap is bounded as

1

M

M∑
m=1

E
[
Fm(ϕ̂m,T )

]
− Fm(ϕ∗

m) ≤ O
(
VM +D∗
√
TM

)
.

(10)
Proof: We moved the detailed proof to link in [28].

Remark 1: The task-averaged regret upper bound (10) is
sensitive to temporal variability VM . Specifically, a lower VM

results in a tighter bound, indicating the algorithm performs
better in environments with stable, less variable tasks. A
larger D∗ loosens the upper bound, implying that as tasks
become more dissimilar, the algorithm may become less
effective at generalizing across these tasks.

Remark 2: The terms T and M in the denominator sug-
gest that increasing the number of iterations per task T or
the total number of tasks M could lead to a reduced regret.
However, the square root indicates a sub-linear rate.

V. CASE STUDY

A. Experiment Setup
The experiment is conducted on a modified IEEE-13 bus

test system with 15 critical loads distributed in a three-phase
system Fig. 1. Four DERs are considered, with parameters
summarized in Table I. The control horizon for load restora-
tion is set to six hours, with a control interval of five minutes,
resulting in a total of 72 time steps. An OpenAI Gym [16]
learning environment is used to interface the RL agent with
the OpenDSS [17] grid simulator, handling RL-agent-grid
interactions, and enforcing operational constraints, including
box constraints on individual power elements and power
balance constraints to maintain system stability. Voltage
limits are set to [0.95, 1.05] p.u., with a penalty of λ = 108

for violations.



TABLE I: Parameters of DERs

DERs Parameters

Energy Storage (ST) −P θ,ch = P θ,dis = 1200
160 ≤ Sθ

t ≤ 1250, αθ ∈ [0.π/4]
Micro-Turbine (MT) pµ ∈ [0, 400], Eµ = 1200

αµ ∈ [0, π/4]
Photovoltaic (PV) pρ ∈ [0, 300] , αρ ∈ [0, π/4]

Wind Energy (WT) pω ∈ [0, 300] , αω ∈ [0, π/4]

To train and evaluate the adaptability of the proposed
Meta based RL method, a series of tasks with varying base
load demand values (pt) are generated, creating diverse grid
control scenarios

Fig. 1: Modified IEEE-13 bus system

B. Performance Comparison

In this section, we evaluate the efficacy of the proposed
Meta-RL (i.e., FOM-RL) algorithm 1 by comparing it with
ES-RL and warm-start RL algorithm 2. Warm-start RL is
implemented by initializing each task policy with the best
policy from the previous task. Figure 2 illustrates the mean
rewards against the number of training steps, showing that
FOM-RL achieves higher mean rewards and maintains this
advantage throughout the training. Warm-start RL benefits
from pre-existing knowledge but achieves moderate gains,
while ES-RL improves at a slower pace.

To quantify the performance of FOM-RL and warm-start
RL, we use two metrics: Jump-start (∆init := difference
between FOM-RL/warm-start and ES-RL reward value at
the start of training), indicating the immediate performance
advantage, and asymptotic performance (∆R :=difference of
reward value from RL at the end of training), reflecting the
reward improvement by the end of the learning steps. Both
warm-start and Meta-policy (πM ) undergo sequential training
over 22 tasks before being tested on scenarios 23 to 27 (for
∆init and ∆R). Table II reveals that FOM-RL consistently
offers an immediate advantage (positive ∆init) and demon-
strates superior long-term learning (robust ∆R). Warm-Start
RL shows variable initial performance but achieves gains by
the end of learning, though not as consistently as FOM-RL.
In Task 26, FOM-RL significantly outperforms Warm-Start
RL, highlighting its ability to adapt rapidly to new tasks
while maintaining a trajectory of improvement.
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Fig. 2: Learning curves of FOM-RL, warm-start-RL and
RL, illustrating FOM-RL superior efficacy in expected per-
formance. The graph showcases the mean and variance of
average rewards over 5 experimental runs.

Algorithm 2: Warm-Start-RL
1 Initialize: random policy π1,0 with parameters ϕ1,0.
2 for each task (m = 1, . . . ,M) do
3 Load initial policy with parameter ϕm,0 for task m.
4 for iteration (j = 1, . . . , T ) do
5 Update policy using ES-RL.
6 Save the best model π̂m,j and model parameter ϕ̂m,j .
7 Set πm+1,0 = π̂m,j and ϕm+1,0 ← ϕ̂m,j .
8 Save warm-start-policy πM = π̂M,j .

C. Controller Evaluation

To see the performance of trained controller we deployed it
to the unseen environment. Figure 3 illustrates the restoration
process of an unseen testing scenario, showcasing the load
restoration sequence and DERs generation profile over a
6-hour horizon. The left-most figure reveals that loads are
restored either wholly or to a feasible extent, depending on
the availability of renewable generation. The restoration fol-
lows a pattern where more critical loads are prioritized. The
middle graph indicates the fluctuating nature of renewable
resources (PV and WT), the stabilizing influence of storage,
and the responsiveness of dispatchable resources like micro-
turbines. The controller effectively manages the intermittency
of renewable generation sources by leveraging storage and
micro-turbines, ensuring a continuous and orderly restoration
of loads according to their priority. The right-most graphs in

TABLE II: Performance metrics

Task Id. FOM-RL Warm-Start RL
∆init ∆R ∆init ∆R

23 42.02 7.439 -33.04 3.839
24 19.89 3.12 28.72 0.17
25 41.18 4.52 -143.4 2.32
26 89.09 46.13 -99.23 39.07
27 13.23 9.38 28.22 10.25
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Fig. 3: Three sub-figures shows the load restoration profile total power and DERs generation profile, and all buses’ voltage
profiles during restoration, respectively.

Figure 3 ensure safe operation by keeping the voltages within
the desired range of [0.95, 1.05].

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we have demonstrated the Superior perfor-
mance of the FOM-RL compared to RL and warm-start RL
to learn better policy for CLR problem. The trained controller
demonstrates superior adaptability to unforeseen events and
reduces the necessity for extensive tuning. Our empirical
findings confirm that FOM-RL generalizes across a spectrum
of operational conditions, backed by a theoretical analysis
that promises a tight sublinear regret bound. This translates
to an improved optimality that scales with task similarity
and the number of tasks involved, as reflected in the task-
averaged optimality gap. The potential of FOM-RL to trans-
form grid management practices through adaptive control
and robust performance is profound, indicating a promising
direction for future research in grid control applications.
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