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Abstract—In this paper, we address the critical challenge of
detecting zero-day attacks in digital substations that employ the
IEC-61850 communication protocol to ensure the security and
reliability of modern power systems. While many heuristic and
machine learning (ML)-based methods have been proposed for
attack detection in IEC-61850 digital substations, generalization
to unknown or zero-day attacks remains a challenge. We propose
an approach that leverages the in-context learning ability of
transformer architecture, which enables the model to learn from
a few examples of a new task without explicit retraining. Our
experiments on the IEC-61850 dataset demonstrate that the
proposed method achieves more than 87% detection accuracy
on zero-day attacks while the existing baselines fail. We believe
this work has the potential to enhance the security of digital
substations by enabling the effective detection of zero-day attacks.

Index Terms—In-context learning; IEC-61850; Intrusion De-
tection Systems; Zero-day attacks.

I. INTRODUCTION

The IEC–61850 communication protocol is commonly used

in digital substations to communicate between Intelligent Elec-

tronic Devices (IEDs) and Merging Units (MUs). Although

the IEC-61850 allows for efficient connectivity and control in

digital substations [1], there are numerous vulnerabilities that

an attacker can exploit to disrupt the operation of these digital

substations [2]. Recently, the occurrences of cyber-attacks on

digital substations have increased. For example, in 2015, a

coordinated cyber-attack was responsible for the mass-scale

power outages in Ukraine [3]. In 2016, another cyber-attack

in Ukraine also led to a mass power outage and affected the

SCADA system at the transmission level [4]. Moreover, a

recent study showed that millions of new cyber-attacks were

detected annually worldwide from 2015 to 2020 [5]. As a

consequence, cybersecurity of digital substations has recently

been a focus for many researchers [6].

Intrusion Detection Systems (IDSs) play an important role

in detecting potential attacks on digital substations so that

timely action can be taken. Although IDS techniques are well-

explored for traditional TCP/IP-based substation communica-

tion networks [7], the specific requirements and unique com-

munication protocols of IEC–61850 substations have not been

adequately addressed. Many existing IDS methods, whether

heuristic-based [8] or machine learning (ML)-based [9], are

designed for specific cases or trained on known attacks, which

can limit their ability to generalize to zero-day attacks (unseen

attacks).

In this paper, we propose a generalizable IDS framework for

the IEC-61850 communication protocol that can detect zero-

day attacks on digital substations. Our method leverages the

”in-context learning” (ICL) ability of transformer architectures

[10] (not to be confused with power transformers in electrical

substations), which have demonstrated potential in various

domains, including natural language processing (NLP) and

computer vision.

In-context learning is the ability to generalize rapidly from

a few examples of a new task that have not previously been

seen without any updates to the model, a key characteristic

of many large language models (LLMs) [11]. For example,

consider the following context examples of network packets

provided to an LLM: Packet1 = Normal;Packet2 =
Normal;Packet3 = Attack. Then, if the query sample to

the LLM is Packet4, which shares similar characteristics

with Packet3, the LLM may output ”Attack” as it is able

to understand through the in-context examples that packets

with certain features are classified as attacks. This ability

of LLMs to understand the context and adapt their outputs

accordingly without any additional training motivates the fol-

lowing question: “How can this in-context learning ability
be leveraged for zero-day attack detection?” Insights from

this investigation may guide the design and deployment of

effective IDS in digital substations.

Main contributions. 1) We propose an intrusion detec-

tion framework that leverages the ICL ability of transformer

models to detect zero-day attacks in digital substations. 2)
We provide training and testing recommendations for the

transformer architectures to be used in the IDS applications. 3)
Finally, we validate the effectiveness of our approach through

extensive experiments on the IEC-61850 dataset and its ability

to detect zero-day attacks.

A. Related Work

ML-based methods. In [12], the authors use a neural

network-based approach to detect spoofed packets. Another

work improved the previous approach using the decision trees

and random forests [13]. However, many of these existing

ML-based methods focus on specific attack cases and do not

generalize to novel attacks. In contrast, our proposed ICL-

based method focuses on zero-day attack detection.

Our approach for zero-day attack detection also shares

some similarities with other advanced ML paradigms, such
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Fig. 1. Traditional ML models, such as Random Forest, Decision Trees,
and Convolutional Neural Networks trained on a specific dataset, often fail
to identify novel attacks during the deployment phase. To adapt to the new
threats, they require retraining with datasets that include these novel attacks.
In contrast, the proposed ICL-based approach can detect novel attacks even
if they were not included in the training dataset. ICL allows it to use the in-
context data and weak labels (WLs) to better generalize and recognize new
attacks without the need for retraining or parameter updates.

as transfer learning [14], out-of-distribution (OOD) detection

[15], meta-learning [16], and multi-task learning [17]. These

techniques also aim to improve the generalization capability of

ML models and enable them to adapt to new tasks or unseen

data. However, our approach specifically leverages the ICL

ability of transformer models, which allows them to adapt to

new tasks based on input context without additional training.

Heuristic-based methods. In [18], the authors use times-

tamp and sequence numbers to detect a replay attack. In

[19], authors investigated the injected spoofing attack on

the IEC-61850-based standard. However, the proposed model

was specifically designed for spoofing attacks and may have

limited applicability to other types of attacks without further

adaptations. The work in [20] develops an IDS for the IEC-

61850 protocol, but they only consider information carried

within sampled value messages, which restricts its application

to other message-sharing protocols (such as GOOSE).

The rest of the paper is organized as follows. In Section II,

we provide the preliminaries on the transformer architecture

and the ICL. Section III provides our proposed IDS method-

ology, and Section IV includes experiments and validates our

zero-day attack detection approach.

II. PRELIMINARIES

A. Transformer Architecture and In-context Learning (ICL)

The GPT-2 (Generative Pre-trained Transformer 2) is a

large-scale language model that has shown remarkable per-

formance in various NLP tasks [21]. GPT-2 employs a trans-

former architecture [10], which relies on a self-attention mech-

anism to model long-range dependencies in sequential data.

It consists of multiple layers of multi-head self-attention and

feed-forward neural networks, enabling the model to capture

complex patterns and relationships within the input sequences.

One of GPT -2’s key strengths is its ability to perform in-

context learning. The model can adapt its predictions based on

the provided examples, allowing it to generalize to new tasks

without retraining. This capability is particularly relevant in

intrusion detection, as it enables the detection of novel zero-

day attacks in digital substations without requiring the model

to be retrained on the unseen attack.

We chose GPT-2 as the backbone of our proposed frame-

work as it has a more manageable model size and computa-

tional requirements, making it more practical for deployment

in resource-constrained environments such as digital substa-

tions. Moreover, the availability of pre-trained GPT-2 models

and the associated training code facilitates the implementation

and reproducibility of our approach.

In-context learning (ICL). ICL is an attractive property

of transformer models that allows them to adapt to new tasks

given as input context without updating the model parameters

[11]. Consider a transformer model Mθ, where θ are the

model parameters that take sequence length of N as input,

where N − 1 samples are input-label pairs which we call in-

context data DN−1 = {(x1, y1), (x2, y2), . . . , (xN−1, yN−1)}.

The N th sample, denoted as xq , is the query point for which

we want to predict the label. The model predicts the label for

xq as follows:

yq = Mθ(x
q;DN−1).

The transformer achieves the above output by computing the

following conditional probability: P (yq|xq, DN−1).

B. Intrusion Detection in Digital Substations

In the digital substations that use the IEC-61850 proto-

col, there are 3 main network protocols: Sampled Values

(SV), Generic Object-Oriented Substation Events (GOOSE),

and MMS [6]. In this paper, we only consider the SV and

GOOSE, as they are the ones involved in substation protection

functions. SV packets transmit sampled voltage and current

values from MUs to IEDs, while GOOSE packets enable

fast and reliable communication between IEDs for exchanging

control commands. Despite the benefits offered by the IEC-

61850, it also introduces vulnerabilities that can be exploited

by attackers. For example, the lack of authentication and

encryption in GOOSE and SV protocols can allow attackers

to inject false data, manipulate control commands, or launch

denial-of-service attacks [22]. These vulnerabilities highlight

the need for developing effective IDS for IEC-61850-based

digital substations.

III. METHODOLOGY

In this section, we describe our overall ICL-based IDS

framework and the training and testing procedures in detail.

Figure 2 and 3 show our overall framework.

A. Training Data Generation

Many recent works have highlighted the importance of

training data diversity to foster ICL capabilities in transformer

models [23]. Specifically, within the cybersecurity context,

this translates to the inclusion of various types of attack

scenarios. However, there are not many existing attack datasets

for the IEC-61850 protocol. To increase the diversity of the
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trained. In stage 2, data samples (x1, ytr,1, . . . , x5, ytr,5) are generated for training, where xi represents packets from synthetic data and ytr,i represents
their labels that can be ground-truth (yi), weak classifier (ŷwc,i) or mixture of both (ymix,i). Finally, in stage 3, the transformer is trained with cross-entropy
loss, where the loss function depends on the training strategy: ground-truth Trained Transformer (GTTF), Weak Classifier Trained Transformer (WCTF), or
Mixture of weak classifiers and ground-truth Transformer (MTF).
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Fig. 3. Transformer testing phase as explained in Section III-D. Incoming packet (x5) is received and passed to pre-trained weak classifiers to generate weak
labels (ŷwc,5). This data-label pair query (xqs = (x5, ŷwc,5)) is then appended at the end of the sequence. The trained transformer model sees different
scenarios depending on the incoming packets in the in-context data and then predicts the label yq for x5 using ICL.

training data, we introduce an approach called ”multi-mixing”,

where the key idea is to generate synthetic attacks without

collecting additional data by linearly combining features from

different attack classes. By creating these synthetic examples,

we aim to expose the transformer model to a wider range

of attack patterns, potentially improving its ability to detect

unseen attacks. To formalize this, consider a dataset with C
distinct classes. Multi-mixing generates a new synthetic class

as follows:

Anew =

C∑

i=1

αiAi, (1)

where Ai represents all data points (shuffled) belonging to

the ith class, αi ∈ [0, 1] denotes the weight of the ith class

incorporated into the new class Anew. Each of these new

classes is assigned a new label, which allows the model to

learn more latent features and generalize better. We will denote

the number of attack classes generated using the multi-mixing

by T , which represents the training attack diversity.

B. In-context Data from Weak Classifiers

In our proposed approach, the transformer model relies on

ICL to adapt to new attack scenarios. However, during testing,

the true labels of the incoming data packets are not available.

Therefore, we use weak classifiers, which are pre-trained mod-

els (e.g., neural networks), for the initial predictions for the

incoming data packets. These are then used as pseudo-labels

in the in-context data for the transformer model. We refer to

these classifiers as ’weak’ because they might not have perfect

detection accuracy but rather provide initial predictions that

can guide the transformer model’s ICL process. To mitigate

the impact of individual weak classifier errors, we concatenate

the outputs from multiple such “weak classifiers”, creating

a collective output ŷwc ∈ R
d, where d denotes the number

of weak classifiers. We use deep neural networks as weak

classifiers tailored for multi-class classification.

C. Training the Transformer Model

To train the transformer model for intrusion detection, there

are 3 possible label choices that can be used for each in-context

sample: 1) the ground-truth labels; 2) the weak classifier

labels; 3) a mixture of weak classifier and the ground-truth

labels. In the experiments section, we show that using a

mixture of weak classifiers and ground-truth labels gives the

best zero-day attack detection accuracy.



We train the transformer model with N input-label pairs,

denoted as {(x1, ytr,1), (x2, ytr,2), . . . , (xN,ytr,N
)}, where tr

denotes the training sample. Each xi is sampled randomly and

bursitly [24] from the T attack classes and the normal data.

The label ytr,i for each i ∈ {1, 2, . . . , N} depends on the

chosen training approach (1), 2), or 3)). When we only use

the weak classifier labels, the label is denoted as ŷwc,i. For

the mixture approach, as ymix,i. When we only use ground-

truth labels, the label is ytr,i = yi, with the exception for the

N th case, where the label is ytr,N = ŷwc,N . This adjustment

sets ytr,N as ŷwc,N rather than the actual yN to discourage the

model from relying exclusively on yN when predicting for xN .

This approach helps ensure the model’s generalization ability

during testing.

For each input i ∈ {1, 2, . . . , N}, transformer model con-

siders the context data Si = (x1, ytr,1, . . . , xi, ytr,i) -where

Di−1 = {(x1, ytr,1), (x2, ytr,2), . . . , (xi−1, ytr,i−1)} is the in-

context data and ith set is the query set xqs = (xi, ytr,i)- to

make its prediction Mθ(Si) for the target yi. Note, instead of

using just the query point xi for which we want to predict

the true label, we append ytr,i as well, which provides extra

information to the transformer model about what the true label

could be.

We design two different cross-entropy loss functions for

training: (i) WCTF (Weak Classifier Trained Transformer)/

MTF (Mixed Trained Transformer) loss and (ii) GTTF

(ground-truth Trained Transformer) loss:

LWCTF (θ) = LMTF (θ) = −
N∑

i=1

C∑

c=1

yci log(M
c
θ (Si)), (2)

LGTTF (θ) = −
C∑

c=1

ycN log(M c
θ (SN )), (3)

where M c
θ (·) gives the probability of xi ∈ c, C is the total

number of classes, and yci is an indicator showing whether

class label c is the correct label for xi. The reason for using a

different loss function for GTTF is to avoid calculating the loss

for i < N , which prevents the model from developing a bias

towards learning from ytr,i for i < N that represents only

the ground-truth labels. Moreover, despite initially training

for multi-class classification, our study focuses on binary

classification as we are only interested in inferring if the

incoming packet is anomalous or not.

D. Testing

Once trained, we can deploy the transformer model to

detect anomalies in real time. The most recent packet received

and its weak classifier labels are treated as the query set,

xqs = (xN , ŷwc,N ), while the preceding N − 1 packets and

their weak labels serve as the in-context data DN−1. Under

standard substation operations, we would anticipate that all

packets within the sequence are normal. However, in the event

of an attack, the xN becomes anomalous, while the earlier

in-context packets would likely still reflect normal conditions.

We refer to the transformer model’s ability to detect anomalies

where the context remains normal while only the query point

is anomalous—as its zero-shot performance. This scenario

assesses the model’s ability to detect completely novel attacks

based solely on its learned representations.

As the attack persists, the attacker continues to send anoma-

lous packets, which begin to appear in the in-context data.

The model’s performance in this setting evaluates its ability

to adapt and detect the new attack based on these few new

unlabeled examples. This gradual transition from normal to

anomalous in the in-context data allows us to evaluate the

model’s n-shot performance, where n denotes the number of

anomalous packets present within the in-context data DN−1.

Note that our approach differs from traditional ICL. Instead

of having access to true labels, we rely solely on pseudo-

labels generated by weak classifiers. From a deployment

perspective, this methodology is especially beneficial for real-

time intrusion detection in digital substations. It enables the

model to quickly adapt to new types of attacks based on just

a few observed instances.

IV. EXPERIMENTS

In this section, we validate the proposed ICL-based

IDS framework on a real-world attack dataset called

ERENO–IEC–61850 [6]. Specifically, the dataset contains 7

types of GOOSE-based attacks: random and inverse replay,

masquerade fake normal, masquerade fake, message injection,

high-status number, and high-rate flooding. Additionally, it

includes two types of SV-based attacks: message injection and

inverse replay. Through the experiments, we aim to answer the

following questions: Q1: How does increasing training attack

diversity improve zero-day attack detection in digital substa-

tions? Q2: What is the most effective way to leverage weak

classifiers and ground-truth labels during training to enhance

the model’s performance? Q3: How well does the proposed

approach is able to detect zero-day or unseen attacks?

We utilize GPT-2 transformer architecture for our experi-

ments [21]. For training, we specifically choose 5 attacks: 3

from the GOOSE and 2 from the SV, along with normal data.

We treat the 5 selected attacks and the normal data as in-

distribution (ID) data, while all the other data from the dataset

as out-of-distribution (OOD), which we use to test the zero-

day attack detection accuracy. We train the transformer with

an in-context sample size, N = 11.

A. The Impact of Training Data Diversity

We answer Q1 by examining the influence of training data

diversity on ICL and zero-day attack detection by training

the GPT-2 transformer on different numbers of attack classes

generated during training, i.e., T ∈ {100, 300, 500, 700, 900}.

These attacks are generated using the multi-mixing approach

discussed in Section III-A. Firstly, from Figure 4, we see that

increasing the number of shots (attack instances in the in-

context data) improves the accuracy on all four types of attacks

not seen during the training.

Second, we also see that as the training data diversity

increases, the ICL performance also improves. This is indi-



Fig. 4. Performance of WCTF against the number of shots for out-of-distribution (OOD) attacks across different numbers of training attack diversity.

Fig. 5. Performance of transformer for different OOD attacks with an increasing number of shots under different training strategies: GTTF, WCTF, and MTF.
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SV High Status

Number
SV Injection

Logistic Regression 0.311 0.173 0.387 0.027 0.884 0.164 0.323 0.165 0.087 0.298
Decision Tree 1.000 0.992 0.029 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Random Forest 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SVM 0.898 0.756 0.645 0.995 0.821 0.999 0.995 0.995 0.995 0.995
Naive Bayes 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DNN 0.544 0.532 0.648 0.087 0.476 0.578 0.728 0.419 0.478 0.476
CNN 0.978 0.854 0.717 0.939 1.000 1.000 0.998 1.000 1.000 1.000
RNN 0.684 0.839 0.608 0.996 0.996 0.999 0.968 0.999 1.000 1.000
LSTM 0.584 0.784 0.886 0.996 0.998 1.000 0.728 0.995 1.000 1.000

Hard Voting WC 0.992 0.729 0.597 0.827 1.000 0.999 0.997 1.000 0.978 1.000
Soft Voting WC 0.994 0.754 0.627 0.873 1.000 0.999 0.997 1.000 0.978 1.000

MTF 0-Shot (Ours) 0.992 0.871 0.847 0.940 0.999 0.982 0.987 1.000 0.937 1.000
MTF Max-Shot (Ours) 1.000 0.952 0.936 0.992 0.999 0.989 0.998 1.000 1.000 1.000

TABLE I
PERFOMANCE OF DIFFERENT MODELS ON OUT-OF-DISTRIBUTION (OOD) AND IN-DISTRIBUTION (ID) DATA.

cated by improved performance on both zero-shot and n-shot

scenarios, when n varies from 1 to 10.

We repeated these experiments for WCTF and saw similar

trends of improved performance with the number of shots

and training data diversity. These results suggest that the

transformer model trained on a higher diversity of attacks will

be more effective at predicting OOD attacks in a zero-shot

scenario and will also generalize more rapidly in an n-shot

setting for intrusion detection in digital substations. Given that

the 900 attack classes in the training dataset performed the

best, we report the next experiments only for this case.

B. Comparative Analysis of Labels During Training

We answer Q2 by investigating the impact of 3 possible

label choices during training: 1) ground-truth labels; 2) weak

classifier labels; 3) a mixture of weak classifier and the ground-

truth labels. First, we experimented with different mixing

ratios. Our experiments showed that the attack detection

accuracy for the ratio of 60% of the weak classifier labels

and 40% of ground-truth labels during training provided the

best attack detection accuracy during testing. Moreover, Figure

5 shows the comparison of attack detection accuracy during

testing when the transformer model is trained on ground-truth

only, weak classifier only, and mixed labels (60% ratio) during

training. It clearly shows the advantage of mixing the ground-

truth and weak classifier labels during training, as it leads to

the best zero-shot and n-shot performance.

The GTTF model shows high zero-shot performance but low

ICL, while WCTF demonstrates the opposite. This suggests an

inverse relation between zero-shot and ICL, possibly due to

the bias introduced by the normal samples in the in-context

dataset DN−1. However, the MTF exhibits both high zero-shot

performance and ICL, defying expectations. Under the zero-



shot setting, the MTF distinguishes whether the query sample

belongs to the DN−1 distribution. As the scenario transitions

to n-shot, the MTF leverages its ICL, combining the zero-

shot capabilities of GTTF and the ICL of WCTF. Overall,

our analysis suggests that we can enhance the effectiveness of

transformer-based IDS for digital substations by incorporating

a combination of weak classifiers and ground-truth labels

during the training process.

C. Zero-day Attack Detection

Finally, we answer Q3 by validating the trained model on

the attacks not seen during the training (OOD attacks) and

on the attacks that are seen during the training (ID attacks).

We compare our results against widely known ML-based

classification methods. The GPT-2 transformer is trained on

900 attack classes and a mix of 60-40 ratio of weak classifiers

and ground-truth labels.

Table III-D shows the final results where the red cells

represent ’failure cases,’ which are defined as follows: 1)
inability to achieve an accuracy threshold of 80% for a

specific attack, and 2) failure to exceed a 99.5% accuracy

for normal. The table clearly shows that the widely used

ML-based methods experienced at least one failure case,

indicating a shortfall in detecting certain types of zero-day

attacks. Moreover, traditional ensembling techniques, such as

hard voting and soft voting, when applied to weak classifiers

also experience failure cases. In contrast, our proposed ICL-

based method, when assessed under the 0-shot and max-shot

conditions, did not show such failure cases. This observation

suggests an intrinsic capacity of our model for recognizing

unseen attacks.

As adversarial strategies become more sophisticated along-

side advancements in AI, it is plausible that attackers will

devise maneuvers that elude the detection capabilities of con-

ventional ML and DL models, as well as rule-based systems.

However our model will detect such maneuvers and generalize

better using ICL. It’s important to note that the optimal ratio

of weak classifier labels to ground-truth labels may vary

depending on the specific characteristics of the power system

and the available resources for labeling.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an ICL-based approach for

detecting zero-day attacks in IEC-61850-based digital substa-

tions. Our approach leverages the ICL capabilities of trans-

former models to adapt to unseen attack scenarios, enabling

the detection of zero-day attacks. While our ICL-based ap-

proach has shown promising results, there are limitations to

be addressed in future work. One important direction is to

extend the approach to handle more complex attack scenarios,

such as multi-stage attacks and coordinated attacks on multiple

substations. Additionally, investigating the integration of our

approach with other security measures, such as anomaly

detection and threat intelligence sharing, could provide a more

comprehensive defense strategy.
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