
Winning the CityLearn Challenge:
Adaptive Optimization with Evolutionary Search

Vanshaj Khattar and Ming Jin

Abstract

Modern power systems will have to face difficult chal-
lenges in the years to come: frequent blackouts in urban
areas caused by high peaks of electricity demand, grid
instability exacerbated by the intermittency of renew-
able generation, and climate change on a global scale
amplified by increasing carbon emissions. While current
practices are growingly inadequate, the pathway of ar-
tificial intelligence (AI)-based methods to widespread
adoption is hindered by missing aspects of trustworthi-
ness. The CityLearn Challenge is an exemplary oppor-
tunity for researchers from multi-disciplinary fields to
investigate the potential of AI to tackle these pressing
issues within the energy domain, collectively modeled as
a reinforcement learning (RL) task. Multiple real-world
challenges faced by contemporary RL techniques are
embodied in the problem formulation. In this paper, we
present a novel method using the solution functions of
optimization as policies to compute the actions for se-
quential decision making, while notably adapting the
parameters of the optimization model from noisy obser-
vations. Algorithmically, this is achieved by an evolution-
ary scheme. Formally, the global convergence property is
established. Our agent ranked the first place in the latest
2021 CityLearn Challenge, being able to achieve supe-
rior performance in almost all metrics while maintaining
some key aspects of interpretability.

Introduction
Rapid urbanization in the past decades has led to substan-
tial increase in energy use that puts stress on the grid assets,
while the integration of additional renewable generation and
energy storage at the distribution level introduces both op-
portunities and new challenges (Vazquez-Canteli et al. 2020).
The cornerstone to handle emerging issues is the deployment
of proper control and coordination strategies, which has po-
tential impact on enhancing energy flexibility and resilience
in the face of climate-induced demand surge (as already ob-
served in places like California, where rolling blackouts are
increasingly frequent during the Summer) (DiCamillo 2019).

The current industry practice is heavily based on opti-
mization models, such as energy dispatch (ED) and unit
commitment (UC), where the parameters (e.g., technological

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and physical constraints) are fixed throughout the lifecycle;
however, such an approach is increasingly confronted by
the uncertainty of environment, stochasticity of renewable
generation, and ever-increasing complexity of the distribu-
tion grid (Abedi, Gaudard, and Romerio 2019). On the other
hand, there has been a surge of machine learning (ML) re-
search, notably RL, since it allows the agent to act without
the need to access the true model—a feature of particular in-
terests for large-scale, complex systems, where it is not cost-
effective to develop models of such high fidelity. However, un-
like optimization-theoretic approaches, ML-based techniques
lack the necessary mathematical framework to provide guar-
antees on correctness, such as physical constraint satisfaction
(e.g., energy balance, thermal limits), causing concerns about
trustworthiness (Amodei et al. 2016). Such concerns are fur-
ther aggravated by the opaqueness, vulnerability, and fragility
of ML systems (Stoica et al. 2017). Despite recent progress
towards addressing trustworthiness, real-world RL is still in
its infancy (Dulac-Arnold et al. 2021).

Against this backdrop, the CityLearn Challenge aims to
spur RL solutions to the control of modern energy systems by
providing a set of benchmarks for urban energy management,
load shaping, and demand response in a range of climate
zones (Vazquez-Canteli et al. 2020). The agent is tasked to
explore and exploit the best coordination strategy of energy
storages distributed in a community of buildings. The perfor-
mance is evaluated against standard metrics such as ramping
cost, peak demands, and carbon emissions. The CityLearn
encapsulates 4 out of the 9 challenges for the real-world RL
identified by (Dulac-Arnold et al. 2021), including 1) the
ability to learn on live systems from limited samples—there
is no training period; 2) dealing with system constraints that
should never or rarely be violated—there are strict balancing
equations for electricity, heating, and cooling energy; 3) the
ability to provide actions quickly—there is a strict time limit
for completing the 4 year evaluation on Google’s Colab; and
4) providing system operators with explainable policies—a
necessity to facilitate real-world adoption and deployment.

In this paper, we provide a technical note of our winning
solution for the 2021 CityLearn challenge based on adap-
tive optimization.1 Indeed, optimization (especially convex

1Our strategy is also applicable to the ongoing 2022 CityLearn
Challenge (NeurIPS).



Figure 1: Basic architecture for reinforcement learning with
optimization as a policy.

optimization) has become the de facto standard in indus-
trial systems with profound theoretical foundations and many
well-established formulations for control and planning ap-
plications (Boyd, Boyd, and Vandenberghe 2004). Such ap-
proaches can easily encode domain-specific constraints (in
the form of nonlinear functions, variational inequalities, or
fixed point equations), and can gracefully handle problems
with millions of decision variables (Facchinei and Pang 2007).
Although well established, optimization models, once built,
typically do not adapt to the real-world conditions, rendering
current approaches rather “rigid.” Fundamentally, the solu-
tion of an optimization lies on a manifold implicitly defined
by a general equation (Dontchev and Rockafellar 2009). The
crux of our idea is to shape this manifold by adapting the
parameters of the optimization model (i.e., objective function
and constraints) (see Fig. 1 for an illustration).

The key difference between an RL problem (our setting)
with well-studied problems in optimization (e.g., stochastic
optimization (Powell 2020), bi-level optimization (Dempe
and Zemkoho 2020)) is that RL only allows access to the
environment through interactive samples (reward, states, etc.)
but not the true dynamics or reward function. Zeroth-order
algorithms, such as simultaneous perturbation (Spall 2005;
Spall 1998) and Bayesian optimization (Snoek, Larochelle,
and Adams 2012; Frazier 2018) are natural candidate for RL
and easy to implement in general (see, e.g., (Mania, Guy, and
Recht 2018)), but may potentially suffer from scalability is-
sues (Ghadimi and Lan 2013). Nonetheless, the parameters of
an optimization model (i.e., variables to be learned) usually
have clear interpretations. Thus, we design a mechanism to
use proper guidance on the initialization and search of these
parameters. Under some mild, verifiable conditions, we prove
the asymptotic convergence to the set of global optima of the
potentially nonconvex optimization. Through some simple
reductions, the method works well in an online environment
without an extensive training period, which is especially ad-
vantageous in a real-world setting where offline environment
for model training is usually not available. According to in-
dependent evaluations, the proposed method achieved the
highest performance in the recent 2021 CityLearn Challenge
(CLC) competition. To demonstrate effectiveness against ex-
isting techniques, we further validate the method by compar-
ing with a range of baselines.

Related work
Optimal control and stochastic optimal control are well-
known approaches to sequential decision makings problems.
(Nozhati, Ellingwood, and Chong 2020). Convex optimiza-
tion is another avenue (Agrawal et al. 2020). Most of the
existing works assume a known dynamic model of the sys-
tem, which makes them less applicable in RL. Various large-
scale stochastic program models have been proposed in the
literature to handle future uncertainty (Carpentier, Gendreau,
and Bastin 2014; Jin et al. 2011; Lium, Crainic, and Wallace
2009). The major drawback is that they can potentially be-
come computationally expensive due to the rapid expansion
of scenario trees in multi-stage stochastic programming. Our
method is computationally lightweight due to the determin-
istic approximation of future uncertainty within a convex
optimization policy class.

Recently, RL has gained popularity for controlling systems
with unknown dynamics and/or high-dimensional state and
action spaces (Ebert et al. 2018; Gu et al. 2017). However,
there have been emerging concerns about trustworthiness
(Amodei et al. 2016; Stoica et al. 2017). The prime advantage
of our method is that it is adaptive to any applications due to
the simplicity and ubiquity of convex optimization policies.

To contextualize the present approach, we make a few
remarks regarding the relation to model-based RL. In partic-
ular implicit MBRL, where the entire MBRL procedure (e.g.,
model learning and planning) is optimized for optimal policy
computation (Moerland, Broekens, and Jonker 2020). How-
ever, unlike existing works (e.g. MuZero (Schrittwieser et al.
2020), Value Prediction Networks (Oh, Singh, and Lee 2017),
Predictron (Silver et al. 2017), MCTSNets (Guez et al. 2018),
Universal Planning Networks (Srinivas et al. 2018)), which
build a model based on (recurrent) neural nets and plan by
unrolling the model, our method learns how to plan by solv-
ing and adapting the parameters of an optimization problem.
The present work is closely related to (Agrawal et al. 2020;
?), which share the line of thinking that uses convex opti-
mization as a policy class to handle uncertainty. In particular,
convex optimization control policies are learned in (Agrawal
et al. 2020) by tuning the parameters within the convex opti-
mization layer. We extend their method to the RL setting.

Preliminaries
Problem setup
Consider an MDP (S,A,P, r), where S is the (possible infi-
nite) state space,A is the set of actions, P : S ×A →M(S)
is the transition probability kernel withM(S) denoting the
set of all probability measures over S and P(·|s, a) defining
the next-state distribution upon taking action a from state
s, and r(s, a) gives the corresponding immediate reward
(can be time dependent). The goal in RL is to learn a policy
π : S → A that maximizes the cumulative rewards over a
finite time horizon:

max
π∈Π

E [R(π)] , (1)

where R(π) :=
∑T

t=0 rt
(
st, π(st)

)
is the episodic reward,

with st ∈ S ⊆ Rns denoting the state at time t and



T as the length of an episode. The expectation is taken
over the initial state distribution and transition dynamics
(under the policy π). To make our method general, for
any policy π, we only require access to a random sample
R(π) of the episodic reward (instead of the per-step reward
rt(st, π(st)) within the episode). We refer to the above set-
ting as stochastic zeroth-order oracle, in alignment of the
optimization literature (Dasgupta and Michalewicz 2013;
Ghadimi and Lan 2013). In the following, we specify the
set of policies Π as the solution functions of an optimization
(Dontchev and Rockafellar 2009).

Canonical approaches and solution functions
The proposed method is motivated by canonical methods
in stochastic programming, which address the above prob-
lem (1) by formulating a stochastic optimization problem
with a lookahead model to account for the impact of present
decisions on future outcomes (Powell 2020). For example, in
multi-stage stochastic programming (Pflug and Pichler 2014),
the action at state st is computed as

argmax
at∈A

(̃
rt
(
st, at

)
+max

π∈Π
Ẽ
[ T∑
t′=t+1

r̃t′
(
st′ , π(st′)

∣∣∣st, at]),
(2)

where r̃t : S×A → R and Ẽ[·] are the surrogate reward func-
tion and surrogate expectation operator (e.g., model-based
scenario trees) designed to approximate the true reward and
environment. Formulation (2) can be also viewed as finding
the solution to a Bellman equation in dynamic programming.
While stochastic programming is widely used in practice, the
main drawbacks are the high computational cost to evaluate
the expectation operator and the potential model mismatch
due to approximations.

A simpler yet more practically appealing method, widely
adopted in the industries nowadays, is to use deterministic
approximations of the future and capture the dependence of
future states on prior decisions through constraints as part of
the lookahead model (Powell 2020) (also commonly referred
to as model-predictive control (MPC) (Borrelli, Bemporad,
and Morari 2017)):

πζ(st) = argmax
āt∈A

max
s̄t′∈S,āt′∈A,t′=t+1,...,T

(
r̄t
(
st, āt; ζ

)
+

T∑
t′=t+1

r̄t′
(
s̄t′ , āt′ ; ζ

))

s. t. gj(st, {s̄t′}Tt′=t+1, {āt′}Tt′=t; ζ) ≤ 0 ; j ∈ I

hi(st, {s̄t′}Tt′=t+1, {āt′}Tt′=t; ζ) = 0 ; i ∈ E
(3)

where {s̄t′}Tt′=t+1 and {āt′}Tt′=t are the optimization vari-
ables corresponding to the planned states and actions, and
the feasible set is defined by gj for j ∈ I and hi for i ∈ E .
We denote the parameters of the objective function and the
constraints collectively by ζ ∈ Z ⊂ Rd. The dependencies
of future states on current and planned states/actions are en-
coded as constraints in (3) as a part of the lookahead model.

Many examples can be found in the MPC literature (Borrelli,
Bemporad, and Morari 2017).

The policy πζ(st) provides the action at the current state
st as the optimal solution to (3), which is also known as the
solution function (Dontchev and Rockafellar 2009). As this
function is in general set-valued (Dontchev and Rockafellar
2009), we make the following assumption.

Assumption 1. For each ζ ∈ Rd and st ∈ S:

• The objective function in (3) is continuous, strictly convex,
gj is continuous and convex for each j ∈ I, and hi is
affine for each i ∈ E .

• The feasible set of (3) is closed, absolutely bounded, and
has a nonempty interior.

The above assumption can be satisfied by imposing proper
conditions on the design of the surrogate model, i.e., objective
and constraints in (3). Note that in our approach, we make no
convexity assumptions about the true dynamics or rewards
of the environment, which can be viewed as a black-box.
The convexity condition is only stipulated for the “surrogate
model” for computational efficiency. Our objective is simply
to learn the parameters of the optimization model to have
good decision-making capability. Perhaps surprisingly, de-
spite that (3) is convex, the policy (as the solution function)
can be highly nonconvex with high representational capacity.
We provide some preliminary results showing the “universal
approximation” property of the solution functions of linear
programs (LPs). Due to the page limit and the fact that it only
serves as a justification of the choice of solution functions as
policies, we provide such a discussion in the appendix, along
with all proofs of the results.

An immediate consequence of the above assumption is
that the solution to (3) is unique; furthermore, it implies the
continuity with respect to parameters.

Lemma 1. The solution function πζ(st) defined in (3) is
continuous with respect to parameter ζ for each st ∈ S.

The proof is a direct application of the Berge maximum
theorem (Berge 1997). To end this section, let us make some
remarks regarding the construction of the surrogate model
of (3). In analogy to reward design (Prakash et al. 2020), the
objective function should be chosen to promote desirable
behaviors. The set of constraints introduce inductive bias on
the transition dynamics of the environment. It is beneficial,
though oftentimes unlikely and non-essential, that the surro-
gate model matches the functional forms of the true reward
or dynamics, an idea shared in model-based RL (Moerland,
Broekens, and Jonker 2020). It is, nevertheless, desirable to
ensure the computational efficiency of (3) to provide actions
quickly—hence the choice of convex programs.

Policy adaptation with evolutionary search
The potential mismatch between the surrogate model and the
real environment and errors due to predictions may adversely
affect the decision quality of (3). Thereby, we aim to adapt
the parameters of the surrogate model to shape the solution
function. The task of finding the optimal parameter within
the set of solution functions Π = {πζ : ζ ∈ Z} can be



compactly written as:

ζ⋆ = argmax
ζ∈Z

E

[ T∑
t=0

rt
(
st, πζ(st)

)]
. (4)

Note that ζ is not a part of the true reward (which remains
unknown to the agent), but only the parameters of the sur-
rogate model that implicitly defines the policy in (3). Since
πζ(st) is given by an optimization (3), (4) can be also viewed
as a bi-level problem (c.f., (Dempe and Zemkoho 2020)): the
outer level aims at learning the parameters to maximize re-
wards, while the inner level defines the policy action in each
state as a solution to (3). The key challenge to solve (4) as a
bi-level problem, nevertheless, is that the outer level objec-
tive can be only accessed through the stochastic zeroth-order
oracle and can be nonconvex with respect to the variable ζ.

Guided evolutionary search
This section discusses the proposed evolutionary algorithm,
inspired by the method of generations (Zhigljavsky 2012)
(as detailed in Algorithm 1). In a nutshell, at each itera-
tion k, the algorithm randomly samples a set of Nk param-
eter candidates, ζk1 , · · · , ζkNk

iid∼ pk. For each candidate
j ∈ {1, ..., Nk}, we evaluate the corresponding policy in the
environment and observe an episodic reward Rk

j ∼ R(πζk
j
)

(here, we slightly overload the notation R(πζk
j
) to denote

the distribution of episodic reward for policy πζk
j

). Then, we
update the distribution for the next iteration as

pk+1(dζ) =

Nk∑
j=1

rkjQk(ζ
k
j , dζ), (5)

where

rkj =
exp(Rk

j )∑Nk

j=1 exp(R
k
j )

(6)

are the weights obtained by the softmax function, which pro-
motes candidates with higher rewards. The probability mea-
sure Qk(ζ

k
j , dζ) is the transition probability given candidate

ζkj . Hence, pk+1(dζ) is a mixture of distributions weighted
by observed rewards in the current iteration k, which can be
sampled by the standard superposition method: at first the
index j is sampled from the discrete distribution {rkj }, and
then the distribution Qk(ζ

k
j , dζ) is sampled given the realiza-

tion of ζkj . The transition probability used in our algorithm is
given by:

Qk(z, dζ) ∼ exp(∥ζ − z∥/ιk)µ(dζ), (7)

where µ(dζ) is a uniform measure over Z and ιk ∼ 1
k2

decays at the rate of 1
k2 . Other candidates are possible and

can still ensure convergence to global optimal, as long as
certain conditions are met, such as the span of Q decreases
over time but does not decrease too quickly that it fails to
hit a global optimum. More rigorous analysis is left for the
next section. The overall visualisation of the algorithm 1 is
presented in Figure 2.

Algorithm 1: Evolutionary search algorithm
Input: Hyperparameters {Nk}, uniform distribution µ

1: Initialize P1 ∼ exp(∥ζ − z∥)µ(dζ),
2: for k = 1, 2, . . . do
3: Sample Nk candidates from the distribution pk:

ζk1 , ζ
k
2 , · · · , ζkNk

iid∼ pk
4: for j = 1, . . . , Nk do
5: Deploy policy πζk

j
for one episode and observe an

episodic reward Rk
j ← R(πζk

j
)

6: end for
7: Update the distribution pk+1 for the next iteration

according to (5).
8: end for

Figure 2: Visualization of the guidance mechanism in Algo-
rithm 1.

Theoretical analysis
We now analyze the convergence property of the sequence
generated by Algorithm 1. We adopt the following notations:
f(ζ) = E[R(πζ)] is the expected episodic reward of policy
πζ , while Rk

j ∼ R(πζk
j
) is a sampled value for candidate

j at iteration k; Λ = argmaxζ∈Z f(ζ) is the set of global
maximizers (may not be unique), f∗ = maxζ∈Z f(ζ) is
the global maximum, and λ(dζ) is some measure over Λ;
B(ζ, ϵ) = {ζ ′ ∈ Z : ∥ζ ′ − ζ∥ ≤ ϵ} is a ball centered at ζ
with radius ϵ, B∗(ϵ) = {ζ ∈ Z : minζ′∈Λ ∥ζ ′ − ζ∥ ≤ ϵ} is a
set of points that are ϵ away from the optimal solution set Λ;
δζ(dz) is the probability measure concentrated at the point ζ .
We also use⇒ to denote weak convergence of measures.

For the analysis of this section, we make the following
assumptions.

Assumption 2. The followings hold:

(a) Rk
j = f(ζkj ) + ξkj , where ξkj

iid∼ Fk(dξ) for any
k ∈ N are independent random variables with distribu-
tion Fk(dξ) bounded on a finite internal [−cξ, cξ] and
E exp(ξkj ) = 1;



(b) |f(ζ)| ≤ cf for all ζ ∈ Z;

(c) there exists ϵ > 0 such that f is continuous on B∗(ϵ);

(d) Qk(z, dζ) = qk(z, ζ)µ(dζ), with supz,ζ∈Z qk(z, ζ) ≤
Lk < ∞ for all k = 1, 2, ..., where µ is a probability
measure such that µ(B∗(ϵ)) > 0 for any ϵ > 0; for
any ζ ∈ Z and k → ∞, the sequence of probability
measures Qk(ζ, dz) weakly converges to δζ(dz);

(e) {Nk} is a sequence of natural numbers Nk such that
Nk →∞ for k →∞;

(f) P̃1(B(ζ, ϵ)) > 0 for all ϵ > 0, ζ ∈ Z;

(g) for any ϵ > 0, there are δ > 0 and a natural k̄ such that
P̃k(B∗(ϵ)) ≥ δ for all k ≥ k̄.

Let us comment on the assumptions above. Condition
(a) requires that the evaluation noises be independent and
bounded; the requirement on the expectation can be satisfied
for truncated log-normal distributions (Thompson 1950); the
iid requirement can be relaxed to mixing processes at the cost
of more complicated analysis (Doukhan 2012); the bounded-
ness condition, on the other hand, seems necessary to keep
the iterates in the vicinity of global maximum if they are
already there. Condition (b) is natural on practical problems.
Condition (c) is natural given that π(ζ) is continuous by
Lemma 1, and can be met if the true reward functions rt are
continuous for all t = 0, 1, ..., T . Assumptions (d), (e), (f)
and (g) formulate necessary requirements on the parameters
of the algorithm that need to be satisfied. Intuitively, con-
ditions (d) and (e) stipulate that the search becomes more
“focused” over time in order to concentrate on the global
optima; however, conditions (f) and (g) indicates that the
decrease of span cannot be too fast in order not to miss the
global optima. Condition (e) can be relaxed to Nk = N for
some finite integer N for all k = 1, ..., but the convergence
will only be towards to the vicinity of Λ due to the finite
sample effect (see Lemma 4 in the appendix, which states
the rate to be on the order N−1/2). Unlike (c), (d), and (e),
(g) is not constructive; however, we provide some verifiable
conditions sufficient for (g) to hold in Corollaries 1 and 2.

Measures pk+1(dζ), k = 1, 2, ... defined in (5) are distri-
butions of random points ζk+1

j conditioned on the results
of preceding evaluations of f with respect to realizations of
ξkj and ζkj , for j = 1, ..., Nk. Let Pk(dζ1, ..., dζNk

) denote
their unconditional joint distributions at iteration k. Next, we
provide the update rule according to Algorithm 1 (note that
we introduce z for ζ as integration variables).

Lemma 2. The probability distribution
Pk+1(dζ1, ..., dζNk+1

) can be written in terms of the
distribution Pk(dζ1, ..., dζNk

) as:

∫
ΩNk

χk(dωNk
)

Nk+1∏
j=1

{
β(ωNk

)

Nk∑
i=1

Λ(zi, ξi, dζj)

}
, (8)

where Ω = Z × [−cξ, cξ],

ωNk
= {z1, ..., zNk

, ξ1, ..., ξNk
} ∈ ΩNk ,

χk(dωNk
) = Pk(dz1, ..., dzNk

)Fk(dξ1) · · ·Fk(dξNk
),

β(ωNk
) =

1∑Nk

j=1 exp(f(zj) + ξj)
, and

Λ(z, ξ, dζ) = exp(f(z) + ξ)Qk(z, dζ).

The proof is immediate by recognizing that the term in
the bracket in (8) is the conditional distribution pk+1(dζj)
defined in (5), and the integration is overall the distribution of
random variables from the preceding iteration. Note that we
take the produce over Nk+1 candidates since they are drawn
iid from pk+1.

Now, we provide the main result on the convergence of the
unconditional marginal distribution

P̃k(dζ) =

∫
ZNk−1

Pk(dζ, dz2, ..., dzNk
)

to some distribution λ(dζ) over the global optimal set.
Theorem 1. Suppose that Assumption 2 holds true, and
let {P̃k} be the sequence of distributions, where P̃k(dζ) is
the unconditional marginal distribution of ζ at iteration k
determined by Algorithm 1. Then, the distribution sequence
weakly converges to λ(dζ), i.e., P̃k ⇒ λ, for k →∞.

The key stage of the proof is to show that there exists a
subsequence in {P̃k} that weakly converges to the distribu-
tion

ϑm(dζ) =
exp(mf(ζ))µ(dζ)∫
exp(mf(z))µ(dz)

,

where m is the index of the subsequence. The above distri-
bution is effectively a softmax function over the function,
and converges to the max function as m goes to infinity. The
rigorous proof can be found in the appendix.

All the conditions in Assumption 2 are natural and non-
restrictive with the exception of (g), which requires some fur-
ther justification. In the following, we present sufficient con-
ditions for (g) for two important ways of desining Qk(z, dζ).
Corollary 1. Under Assumption 2 (except for (g)), and
further assume that f can be evaluated without noise (i.e.,
ξ = 0). Let the transition probability Qk(z,A) be defined by

Qk(z,A) =

∫
1{ζ∈A,f(z)≤f(ζ)}Tk(z, dζ)

+ 1{x∈A}

∫
1{f(ζ)<f(z)}Tk(z, dζ), (9)

where {Tk(z, dζ)} weakly converges to δz(dζ) for all z ∈ Z .
Then, there exists a sequence of natural numbers Nk such
that the sequence of distributions {P̃k} weakly converges to
λ for k →∞.

To implement the transition of (9), one first needs to sam-
ple a variable ζ according to Tk(z, dζ) and observe its reward
value f(ζ); then, the output is ζ if f(ζ) ≥ f(z) and z oth-
erwise. Such scheme crucially depends on a reliable way of
comparing candidates (e.g., noiseless evaluation). The next
result applies more generally in the presence of random noise.



Corollary 2. Under Assumption 2 (except for (g)), and sup-
pose the transition probability Qk(z, dζ) is defined by

Qk(z, dζ) = ck(z)ψ((ζ − z)/ιk)µ(dζ), (10)

where ck(z) = (
∫
ψ((ζ − z)/ιk)µ(dζ))−1 is the normaliza-

tion term, ψ is a continuous symmetrical finite density on Z ,
and

ιk > 0,

∞∑
k=1

ιk <∞.

Then, there exists a sequence of natural numbers Nk such
that {P̃k} weakly converges to λ for k →∞.

A special case of the above transition is implemented in
our experiment, where µ is the uniform distribution and ψ =
exp(∥ζ− z∥/ιk) is the (unnormalized) Gaussian distribution.
Note that some recent works have explored the average rate
of convergence for evolutionary algorithms (EAs) (Chen and
He 2021). However, their theoretical analysis is based on
a martingale-type argument, which only applies to the case
where there is no noise in the cost function evaluations.

Results from the CityLearn Challenge
Challenge overview. The competition has an online setup
with only one episode of the entire 4 years, when agents will
exploit the best policies to optimize the coordination strategy.
The goal of each agent is to minimize the costs from the envi-
ronment, such as ramping cost, peak demands, 1-load factor,
and carbon emissions. The state space contains information
such as hour of day, outdoor temperature/relative humidity/-
solar radiation (and 6/12/24 hour-ahead predictions), electric-
ity currently consumed by electrical appliances, state of the
charges (SOCs) of the storage devices, current net electricity
consumption of the building, current carbon intensity of the
power grid, among the total 30 continuous states. The agent
is allowed to control the charging/discharging actions of stor-
age devices for domestic hot water (DHW), chilled water,
and electricity (in total of 3 continuous actions per building).
The environment is viewed as a blackbox to the agent as
standard RL setup, where the transition dynamics depend on
various energy models (e.g., air-to-water heat pumps, elec-
tric heaters) as well as energy loads of the buildings, which
include space cooling, dehumidification, appliances, DHW,
and solar generation.

Evaluation. The submission of every team will be evalu-
ated on a set of metrics, including: (1) ramping:

∑
|et−et−1|,

where e is the net electricity consumption at every time-step;
(2) 1-load factor: the average net electricity load divided by
the maximum electricity load; (3) average daily peak net
demand; (4) maximum peak electricity demand; (5) total
amount of electricity consumed; (6) total amount of carbon
emissions. The competition evaluates the performance by
computing the ratio of costs with respect to a rule-based
controller (RBC)—lower ratios indicate better performances.
Note that the RBC controller is ubiquitous in traditional
building control systems, and is simply of the form “take
action ah in hour h,” where ah is a constant independent of
current states except the hour of the day (h ∈ {1, ..., 24}).

We refer the readers to the online documents2 and publica-
tion (Vazquez-Canteli et al. 2020) for detailed description of
the competition. We will only focus on our strategy in this
document.

ZO-iRL (zeroth-order implicit RL) strategy. We name
our method ZO-iRL since the policy action is implicitly deter-
mined by solving an optimization problem and the learning
algorithm is zeroth-order in an RL setting. As our method
is designed for single-agent episodic RL, we first reduce the
original task that consists of a single episode with the length
of 4 years to multiple episodes with the length of a day. We
use the per-step reward −max(0, et)

3 as recommended by
(Vazquez-Canteli et al. 2020), where et is the net electricity
consumption (or generation if et < 0). This reward favors
consumption patters that are close to average throughout the
day rather than peaked in a few hours, which are also aligned
with the actual metrics used in the evaluation, such as 1-load
factor and maximum peak electricity demand. Another re-
duction performed is from multi-agent RL to single-agent
RL, where each building is controlled and its policy updated
separately in a decentralized control fashion.

We instantiate the optimization in (3) as follows:

argmax
āt∈A

max
s̄t′∈S,āt′∈A,t′=t+1,...,T

∑T

t′=t+1
r̄t′
(
s̄t′ ; ζ)

s. t. gj(st, {s̄t′}Tt′=t+1, {āt′}Tt′=t) ≤ 0 ; j ∈ I
hi(st, {s̄t′}Tt′=t+1, {āt′}Tt′=t) = 0 ; i ∈ E

(11)

where st consists of a subset of state variables, such as the
net electricity consumption and SOCs of storage devices, and
the surrogate reward

r̄t(st; ζ)) = −|et − et−1| − θtet
is a combination of the ramping cost and the “virtual” elec-
tricity cost, where θt ∈ [0, 10] can be viewed as the virtual
electricity price to be learned in order to encourage desirable
consumption patterns (e.g., load flattening and smoothing).
For instance, a higher value of θt discourages consumption
in the corresponding hour t. The inequalities can be grouped
into technology constraints (e.g., maximum/minimum cool-
ing power) and bounds on states and actions. The equalities
can be grouped into physics accounting for energy balances
(i.e., consumption is equal to supply) and technology (e.g.,
rules of updating SOCs). As these are standard in energy
modeling (see, e.g., ??), we provide details in the appendix.

Let ζ = {θt}t=1,...,24 denote the set of policy parameters.
The aim of the agent is to learn ζ ∈ R24 that represents
the virtual electricity costs. Note that the optimization (11)
also depends on predictions of energy demands and solar
generation in the future. For simplicity, our predictors are
based on a simple averaging scheme that takes the average of
the value in the corresponding hour among the last 2 weeks
data; thus, there are no specific needs to tune parameters.

It can be observed from Fig. 4 that ZO-iRL has achieved
the lowest cost ratios (i.e. the best scores) as compared to
baseline methods. In particular, baseline RL methods, that

2https://sites.google.com/view/
citylearnchallenge/

https://sites.google.com/view/citylearnchallenge/
https://sites.google.com/view/citylearnchallenge/


ZOiRL ICD-CA IDLab-EMIB
Total
score 0.944 1.0705 1.0702

Total last
year 0.942 1.052 1.077

Coordination
score 0.915 1.107 1.094

Coordination
score last yr. 0.918 1.074 1.098

Carbon
emissions 1.003 1.000 1.028

Table 1: Performance of top 3 teams on the CityLearn chal-
lenge 2021. The green represents the best score for a category.
(ZOiRL - winning entry)

Method Climate
Zone Ramping 1-Load

Factor
Avg. Daily
Peak

Peak
Demand

Net Elec.
Consumption

Avg.
Score

ZO-iRL 1 0.833 1.010 0.986 0.953 1.002 0.964
2 0.784 1.025 0.962 0.961 1.001 0.956
3 0.822 1.048 0.989 0.955 1.001 0.969
4 0.743 0.990 0.974 1.006 1.002 0.953
5 0.711 0.999 0.9691 0.939 1.004 0.924

Average Score 0.953
SAC 1 2.470 1.202 1.354 1.209 1.049 1.390

2 2.413 1.183 1.349 1.152 1.056 1.369
3 2.609 1.1185 1.382 1.313 1.056 1.435
4 2.512 1.168 1.376 1.207 1.057 1.397
5 1.614 1.115 1.133 1.159 1.015 1.177

Average Score 1.353
Random
Agent 1 1.071 1.130 1.168 1.077 0.993 1.073

2 1.045 1.138 1.151 1.079 0.987 1.066
3 1.032 1.131 1.158 1.180 0.991 1.081
4 0.965 1.101 1.114 1.134 0.984 1.048
5 1.015 1.138 1.116 1.089 0.987 1.057

Average Score 1.065
MARLISA 1 1.02 1.019 1.015 1.0 1.0 1.009

2 1.008 1.02 1.012 1.0 0.998 1.006
3 1.002 1.017 1.01 1.0 0.999 1.005
4 1.002 1.029 1.014 1.0 0.998 1.007
5 1.39 1.105 1.103 1.205 1.001 1.136

Average Score 1.032

Table 2: Scores for ZO-iRL and comparison methods, includ-
ing SAC kathirgamanathan2020centralised and MARLISA
vazquez2020marlisa. The random agent basically uniformly
selects an action within the range at each timestep.

have otherwise shown empirical successes in game playing
and various control tasks, struggle to learn a reasonable policy
within the limited 4-year test period, while ZO-iRL is able to
quickly find a good policy within the first few months (see Fig.
4). Furthermore, the learning progress is more interpretable
as we can inspect the evolution of parameter pele as shown in
Fig. 3. In this particular case, the building tends to overcharge
its storage in the early morning, which results in unexpected
electricity peaks that is undesirable; by increasing the virtual
prices during that period, the agent is able to find a better
strategy that smooth-es the peaks, thus resulting in better
performance. More details can be found in the supplementary
material.

Conclusion and future directions
The present work introduces a novel framework for implicit
model-based RL. By exploiting the strength of convex opti-

Figure 3: Evolution of the implicit parameters pele over the
test period, where the values are color-coded.

Figure 4: Learning curve of ZO-iRL compared with other
RL-baselines, where Rule Based Controller (RBC) takes a
baseline cost of constant 1.

mization, the proposed method is able to simultaneously ad-
dress a range of challenges for real-world RL. Using optimiza-
tion solution-functions as policies offers a promising way to
introduce data-driven algorithms into the real world with in-
terpretability. Such method can be potentially extended to
a wide range of problems where optimization models exist.
Our work opens up exciting research directions for future
works, including the extension of the proposed framework to
other derivative-free methods such as Bayesian optimization
or first-order methods such as actor-critic method.

References
[Abedi, Gaudard, and Romerio 2019] Abedi, A.; Gaudard,
L.; and Romerio, F. 2019. Review of major approaches
to analyze vulnerability in power system. Reliability Engi-
neering & System Safety 183:153–172.

[Agrawal et al. 2020] Agrawal, A.; Barratt, S.; Boyd, S.; and
Stellato, B. 2020. Learning convex optimization control



policies. In Learning for Dynamics and Control, 361–373.
PMLR.

[Amodei et al. 2016] Amodei, D.; Olah, C.; Steinhardt, J.;
Christiano, P.; Schulman, J.; and Mané, D. 2016. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565.

[Bačák and Borwein 2011] Bačák, M., and Borwein, J. M.
2011. On difference convexity of locally lipschitz functions.
Optimization 60(8-9):961–978.

[Berge 1997] Berge, C. 1997. Topological Spaces: including
a treatment of multi-valued functions, vector spaces, and
convexity. Courier Corporation.

[Billingsley 2013] Billingsley, P. 2013. Convergence of prob-
ability measures. John Wiley & Sons.

[Borrelli, Bemporad, and Morari 2017] Borrelli, F.; Bempo-
rad, A.; and Morari, M. 2017. Predictive control for linear
and hybrid systems. Cambridge University Press.

[Boyd, Boyd, and Vandenberghe 2004] Boyd, S.; Boyd, S. P.;
and Vandenberghe, L. 2004. Convex optimization. Cambridge
university press.

[Carpentier, Gendreau, and Bastin 2014] Carpentier, P.-L.;
Gendreau, M.; and Bastin, F. 2014. Managing hydroelectric
reservoirs over an extended horizon using benders decompo-
sition with a memory loss assumption. IEEE Transactions
on Power Systems 30(2):563–572.

[Chen and He 2021] Chen, Y., and He, J. 2021. Average
convergence rate of evolutionary algorithms in continuous
optimization. Information Sciences 562:200–219.

[Dasgupta and Michalewicz 2013] Dasgupta, D., and
Michalewicz, Z. 2013. Evolutionary algorithms in
engineering applications. Springer Science & Business
Media.

[Dempe and Zemkoho 2020] Dempe, S., and Zemkoho, A.
2020. Bilevel optimization. Springer.

[DeVore and Lorentz 1993] DeVore, R. A., and Lorentz, G. G.
1993. Constructive approximation, volume 303. Springer
Science & Business Media.

[DiCamillo 2019] DiCamillo, M. 2019. Tabulations from a
late november 2019 survey of california voters about recent
power blackouts in california and the problems facing the
pacific gas and electric company.

[Dontchev and Rockafellar 2009] Dontchev, A. L., and Rock-
afellar, R. T. 2009. Implicit functions and solution mappings,
volume 543. Springer.

[Doukhan 2012] Doukhan, P. 2012. Mixing: properties and
examples, volume 85. Springer Science & Business Media.

[Dulac-Arnold et al. 2021] Dulac-Arnold, G.; Levine, N.;
Mankowitz, D. J.; Li, J.; Paduraru, C.; Gowal, S.; and Hester,
T. 2021. Challenges of real-world reinforcement learning:
definitions, benchmarks and analysis. Machine Learning
110(9):2419–2468.

[Ebert et al. 2018] Ebert, F.; Finn, C.; Dasari, S.; Xie, A.; Lee,
A.; and Levine, S. 2018. Visual foresight: Model-based
deep reinforcement learning for vision-based robotic control.
arXiv preprint arXiv:1812.00568.

[Facchinei and Pang 2007] Facchinei, F., and Pang, J.-S.
2007. Finite-dimensional variational inequalities and com-
plementarity problems. Springer Science & Business Media.

[Frazier 2018] Frazier, P. I. 2018. Bayesian optimization. In
Recent Advances in Optimization and Modeling of Contem-
porary Problems. INFORMS. 255–278.

[Ghadimi and Lan 2013] Ghadimi, S., and Lan, G. 2013.
Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization
23(4):2341–2368.

[Gu et al. 2017] Gu, S.; Holly, E.; Lillicrap, T.; and Levine,
S. 2017. Deep reinforcement learning for robotic manipu-
lation with asynchronous off-policy updates. In 2017 IEEE
international conference on robotics and automation (ICRA),
3389–3396. IEEE.

[Guez et al. 2018] Guez, A.; Weber, T.; Antonoglou, I.; Si-
monyan, K.; Vinyals, O.; Wierstra, D.; Munos, R.; and Silver,
D. 2018. Learning to search with mctsnets. In International
conference on machine learning, 1822–1831. PMLR.

[Hornik, Stinchcombe, and White 1989] Hornik, K.; Stinch-
combe, M.; and White, H. 1989. Multilayer feedforward
networks are universal approximators. Neural networks
2(5):359–366.

[Jin et al. 2011] Jin, S.; Ryan, S. M.; Watson, J.-P.; and
Woodruff, D. L. 2011. Modeling and solving a large-scale
generation expansion planning problem under uncertainty.
Energy Systems 2(3):209–242.

[Kathirgamanathan et al. 2020] Kathirgamanathan, A.; Twar-
dowski, K.; Mangina, E.; and Finn, D. P. 2020. A centralised
soft actor critic deep reinforcement learning approach to
district demand side management through citylearn. In Pro-
ceedings of the 1st International Workshop on Reinforcement
Learning for Energy Management in Buildings & Cities, 11–
14.

[Lium, Crainic, and Wallace 2009] Lium, A.-G.; Crainic,
T. G.; and Wallace, S. W. 2009. A study of demand
stochasticity in service network design. Transportation
Science 43(2):144–157.

[Mania, Guy, and Recht 2018] Mania, H.; Guy, A.; and
Recht, B. 2018. Simple random search of static linear poli-
cies is competitive for reinforcement learning. Advances in
Neural Information Processing Systems 31.

[Mhaskar 1996] Mhaskar, H. N. 1996. Neural networks for
optimal approximation of smooth and analytic functions. Neu-
ral Computation 8(1):164–177.

[Moerland, Broekens, and Jonker 2020] Moerland, T. M.;
Broekens, J.; and Jonker, C. M. 2020. Model-based reinforce-
ment learning: A survey. arXiv preprint arXiv:2006.16712.

[Nozhati, Ellingwood, and Chong 2020] Nozhati, S.; Elling-
wood, B. R.; and Chong, E. K. 2020. Stochastic optimal
control methodologies in risk-informed community resilience
planning. Structural Safety 84:101920.

[Oh, Singh, and Lee 2017] Oh, J.; Singh, S.; and Lee, H.
2017. Value prediction network. Advances in neural in-
formation processing systems 30.



[Pflug and Pichler 2014] Pflug, G. C., and Pichler, A. 2014.
Multistage stochastic optimization, volume 1104. Springer.

[Powell 2020] Powell, W. 2020. Reinforcement learning and
stochastic optimization: A unified framework for sequential
decisions. Princeton NJ.

[Prakash et al. 2020] Prakash, B.; Waytowich, N.; Ganesan,
A.; Oates, T.; and Mohsenin, T. 2020. Guiding safe reinforce-
ment learning policies using structured language constraints.
UMBC Student Collection.

[Rockafellar and Wets 2009] Rockafellar, R. T., and Wets, R.
J.-B. 2009. Variational analysis, volume 317. Springer
Science & Business Media.

[Schrittwieser et al. 2020] Schrittwieser, J.; Antonoglou, I.;
Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.;
Lockhart, E.; Hassabis, D.; Graepel, T.; et al. 2020. Mastering
atari, go, chess and shogi by planning with a learned model.
Nature 588(7839):604–609.

[Silver et al. 2017] Silver, D.; Hasselt, H.; Hessel, M.; Schaul,
T.; Guez, A.; Harley, T.; Dulac-Arnold, G.; Reichert, D.;
Rabinowitz, N.; Barreto, A.; et al. 2017. The predictron: End-
to-end learning and planning. In International conference on
machine learning, 3191–3199. PMLR.

[Snoek, Larochelle, and Adams 2012] Snoek, J.; Larochelle,
H.; and Adams, R. P. 2012. Practical bayesian optimization of
machine learning algorithms. Advances in neural information
processing systems 25.

[Spall 1998] Spall, J. C. 1998. Implementation of the si-
multaneous perturbation algorithm for stochastic optimiza-
tion. IEEE Transactions on aerospace and electronic systems
34(3):817–823.

[Spall 2005] Spall, J. C. 2005. Introduction to stochastic
search and optimization: estimation, simulation, and control,
volume 65. John Wiley & Sons.

[Srinivas et al. 2018] Srinivas, A.; Jabri, A.; Abbeel, P.;
Levine, S.; and Finn, C. 2018. Universal planning net-
works: Learning generalizable representations for visuomotor
control. In International Conference on Machine Learning,
4732–4741. PMLR.

[Stoica et al. 2017] Stoica, I.; Song, D.; Popa, R. A.; Patter-
son, D.; Mahoney, M. W.; Katz, R.; Joseph, A. D.; Jordan,
M.; Hellerstein, J. M.; Gonzalez, J. E.; et al. 2017. A
berkeley view of systems challenges for ai. arXiv preprint
arXiv:1712.05855.

[Thompson 1950] Thompson, H. 1950. Truncated normal
distributions. Nature 165(4194):444–445.

[Vazquez-Canteli et al. 2020] Vazquez-Canteli, J. R.; Dey, S.;
Henze, G.; and Nagy, Z. 2020. Citylearn: Standardizing
research in multi-agent reinforcement learning for demand
response and urban energy management. arXiv preprint
arXiv:2012.10504.

[Vazquez-Canteli, Henze, and Nagy 2020] Vazquez-Canteli,
J. R.; Henze, G.; and Nagy, Z. 2020. Marlisa: Multi-agent
reinforcement learning with iterative sequential action
selection for load shaping of grid-interactive connected
buildings. In Proceedings of the 7th ACM International

Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation, 170–179.

[Wainwright 2019] Wainwright, M. J. 2019. High-
dimensional statistics: A non-asymptotic viewpoint, vol-
ume 48. Cambridge University Press.

[Zhigljavsky 2012] Zhigljavsky, A. A. 2012. Theory of global
random search, volume 65. Springer Science & Business
Media.



Proof of results in the main paper
Proof of Lemma 1
Let Φ(st, ζ) denote the feasible set of (3). By Assumption 1, Φ(st, ζ) is convex for fixed st and ζ and has a nonempty interior.
This implies that Φ(st, ζ) is continuous in st and ζ (Rockafellar and Wets 2009, example 5.10). Hence, by Berge maximum
theorem (Berge 1997), πζ(st) is upper hemicontinuous in ζ for fixed st ∈ S. However, we know that πζ(st) contains a single
point due to strict convexity of the objective function. Thus, for fixed st ∈ S , πζ(st) is a single-valued function continuous in ζ.

Proof of Theorem 1
Choose from {P̃k} a weakly convergent subsequence {P̃ki

}, which is possible due to Prohorov’s theorem (Billingsley 2013, Ch.
6), and denote the limit by κ(dζ). By Lemma 4, we have that

P̃k+1(dζ) =

(∫
P̃k(dz) exp(f(z))

)−1 ∫
P̃k(dz) exp(f(z))

(
Qk(z, dζ) + ∆Nk

(dζ)
)
. (12)

It follows that the subsequence {P̃ki+1} weakly converges to the distribution ϑ1(dζ) = c1 exp(f(ζ))κ(dζ), where c1 is the
normalization constant. Similarly, the subsequence {P̃ki+m} weakly converges to the distribution

ϑm(dζ) =
exp(mf(ζ))µ(dζ)∫
exp(mf(z))µ(dz)

,

which, by Lemma 3, converges to λ. Thus, by standard argument of diagonalization (Billingsley 2013), one can show that there
exists a subsequence {P̃kj} that weakly converges to λ. Applying Lemma 4 again yields that {P̃kj+1} converges to the same
limit. Thus, any subsequence of {P̃k} converges to this limit, and the same holds for the sequence itself.

Proof of Corollary 1
By Assumption 2 (c) and (f), we have that P̃1(B∗(ϵ)) > 0 for any ϵ > 0. By (9), we have that

P̃k(B∗(ϵ)) ≥ · · · ≥ P̃1(B∗(ϵ)) > 0

for all k ∈ N. Hence, Assumption 2 (g) is satisfied. By Theorem 1, the claim is proved.

Proof of Corollary 2
Under Assumption 2 (except for (g)), the distributions (15) have continuous densities with respect to the Lebesgue measure. Let
A(ϵ) = {ζ ∈ Z : f(ζ) ≥ f∗ − ϵ}. By (10) and Lemma 2, we have that P̃k(dζ) > 0 for any k ∈ N. Fix an arbitrary δ > 0. We
shall choose {Nk} such that for any k and ϵ > 0, the following holds

P̃k+1(A(ϵ+ ϵk)) ≥ (1− δk)P̃k(A(ϵ)),

where
0 < δk < 1 for k ∈ N,

∑
k∈N

δk <∞, (13)

and ϵk ≥ 0 are determined in terms of ιk and the sizes of the support of density ψ,
∞∑
k=1

ϵk = constant

∞∑
k=1

ιk <∞.

Such sequence of {Nk} exists by Lemma 2 and the finiteness of ψ. Next, choose ko such that
∞∑

k=ko

ϵk <
1

2
δ,

and let δ1 = P̃ko
(A(δ/2)). Then, for any k ≥ ko, we have

P̃k+1(A(δ)) ≥ P̃ko
(A(δ/2 +

k∑
i=ko

δi))

k∏
i=ko

(1− δi)

≥ δ1
∞∏

i=ko

(1− δi)

> 0

where the last inequality is implied by (13). The proof is complete.



Supporting lemmas
Lemma 3. Under Assumption 2 (b), (c), and (d), the sequence of distributions

exp(kf(ζ))µ(dζ)∫
exp(kf(z))µ(dz)

⇒ λ(dζ),

i.e., weakly converges to λ(dζ) for k →∞.

Proof. By the definition of weak convergence, it suffices to show that for any function Ψ(ζ) continuous on Z , it holds that

lim
k→∞

ck

∫
exp(kf(ζ))Ψ(ζ)µ(dζ) =

∫
Ψ(ζ)λ(dζ), (14)

where ck = 1/
∫
exp(kf(z))µ(dz). To proceed, Let Bi = B(ϵi) = {ζ ∈ Z : minζ′∈Λ ∥ζ ′ − ζ∥ ≤ ϵi} and Di = {ζ ∈ Z :

minζ′∈Λ ∥ζ ′ − ζ∥ ≥ ϵi}, for i = 0, 1, 2 and some ϵ0, ϵ1, and ϵ2 to be determined. For any δ > 0, by continuity of Ψ, there exists
ϵ0 > 0 such that |Ψ(z)−

∫
Ψ(ζ)λ(dζ)| ≤ δ for all z ∈ B0. Choose some ϵ1 > 0 such that ϵ1 < ϵ0. Then, we have∣∣∣∣ck ∫ exp(kf(ζ))Ψ(ζ)µ(dζ)−

∫
Ψ(ζ)λ(dζ)

∣∣∣∣
≤ ck

∫
B1

exp(kf(z))

∣∣∣∣Ψ(z)−
∫

Ψ(ζ)λ(dζ)

∣∣∣∣µ(dz) + ck

∫
D1

exp(kf(z))

∣∣∣∣Ψ(z)−
∫

Ψ(ζ)λ(dζ)

∣∣∣∣µ(dz)
≤ δ ck

∫
B1

exp(kf(z))µ(dz)︸ ︷︷ ︸
(i)

+2∥Ψ∥∞ ck

∫
D1

exp(kf(z))µ(dz)︸ ︷︷ ︸
(ii)

,

where the first inequality is due to triangle inequality, and the second inequality is due to the choice of ϵ1 (also, recall that
∥Ψ∥∞ = sup |Ψ(z)|). Hence, the lemma is proved if we can show that (i)→ 1 and (ii)→ 0 as k →∞.

To this end, let C1 = supζ∈D1
f(ζ). By Assumption 2 (c), there exists ϵ2 such that 0 < ϵ2 < ϵ1, and

C2 = inf
ζ∈B2

f(ζ) > C1.

For any k > 0, we have∫
B1

exp(kf(z)− kC1)µ(dz) >

∫
B2

exp(kf(z)− kC1)µ(dz) ≥
∫
B2

exp(k(C2 − C1))µ(dz).

Thus, ∫
D1
µ(dz)∫

B2
exp(k(C2 − C1))µ(dz)

≥
∫
D1

exp(kf(z))µ(dz)∫
B1

exp(kf(z))µ(dz)︸ ︷︷ ︸
(iii)

≥ 0.

By driving k →∞ to the limit and using the sandwich theorem, we have that (iii)→ 0. This immediately implies that (i)→ 1
and (ii)→ 0 as k →∞, hence concluding the proof.

Lemma 4. Let Assumption 2 (a), (b), and (d) be fulfilled. Then, the marginal distributions can be written as

P̃k+1(dζ) =

(∫
P̃k(dz) exp(f(z))

)−1 ∫
P̃k(dz) exp(f(z))Qk(z, dζ) + ∆Nk

(dζ), (15)

where the signed measures ∆Nk
(dζ) converge to zero in variation for Nk →∞ with the rate Nk

−1/2.

Proof. For notational simplicity, we use N for Nk throughout the proof. By Assumption 2 (a) and Lemma 2, the marginal
distribution P̃k+1(dζ) is given by:

P̃k+1(dζ) =

∫
ΩN

χk(dωN )

{
β(ωN )

N∑
i=1

Λ(ζi, ξi, dζ)

}

=

N∑
i=1

∫
ΩN

χk(dωN )β(ωN )Λ(ζi, ξi, dζ)

=

∫
ΩN

χk(dωN ) {Nβ(ωN )}Λ(ζ1, ξ1, dζ).



which can be represented in the form of (15) with

∆N (dζ) =

∫
ΩN

χk(dωN )Λ(ζ1, ξ1, dζ)

{
Nβ(ωN )−

(∫
P̃k(dz) exp(f(z))

)−1
}

+

(∫
P̃k(dz) exp(f(z))

)−1{∫
ΩN

χk(dωN )Λ(ζ1, ξ1, dζ)−
∫
Ω

P̃k(dz) exp(f(z))Q(z, dζ)

}
= (i) + (ii)

We shall show that (i)→ 0 in variation for N →∞ and (ii) = 0. Due to Assumption 2 (d), the convergence of (i) is equivalent
to the fact that

∫
|vN (ζ)|µ(dζ)→ 0, where

vN (z) =

∫
ΩN

χk(dωN ) exp(f(ζ1) + ξ1)qk(ζ1, z)

{
Nβ(ωN )−

(∫
P̃k(dz) exp(f(z))

)−1
}
.

To proceed, let γN = 1
N

∑N
i=1 exp(f(ζi) + ξi) and ψ(z) = exp(f(ζ1) + ξ1)qk(ζ1, z). Due to the symmetrical dependence of

random elements ζ1, ..., ζN and the independence of ξ1, ..., ξN , the random variables γN converge in mean for N →∞ to some
random variable γ in dependent of all γi(ωi), yi = f(ζi) + ξi, for i ∈ N, and

Eγ = E exp(yi) =

∫
exp(f(ζ) + ξ)P̃k(dζ)Fk(dξ).

Equivalently, for any δ1 > 0, there exists Nγ(δ1) ≥ 1 such that E|γN − γ| < δ1 for all N ≥ Nγ(δ1). Then,

|vN (z)| =
∣∣∣∣E(ψ(z)γN

)
− Eψ(z)

Eγ

∣∣∣∣ (16)

=
1

Eγ

∣∣∣∣E(ψ(z)γγN

)
− Eψ(z)

∣∣∣∣ (17)

≤ exp(cf )

∣∣∣∣E(ψ(z)|γ − γN |γN

)∣∣∣∣ (18)

≤ exp(2cf )∥ψ∥∞E|γ − γN | (19)
≤ Lk exp(3cf + cξ)E|γ − γN |, (20)

where the second equality is due to the independence of γ from γN and ψ, the first and second inequalities are due to
γ, γN ≥ exp(−cf ) (by Assumption 2 (b)), and the last relation is due to ∥ψ∥∞ ≤ exp(f(ζ) + ξ))Lk ≤ Lk exp(cf + cξ). In
order to show that

∫
|vN (z)|µ(dz) → 0, we need to prove that for any δ > 0 and z ∈ Z , there exists N⋆(δ, z) such that for

N ≥ N⋆(δ, z), there holds |vN (z)| ≤ δ. This can hold if one takes δ1 = δL−1
k exp(−3cf − cξ) and N⋆(δ, z) = Nγ(δ1).

Now, by (20), we have that
∫
|vN (ζ)|µ(dζ) ≤ Lk exp(3cf + cξ)E|γ − γN |. From the central limit theorem for symmetrically

dependent random variables (see ??), it follows that E|γ − γN | = O(N−1/2). Consequently,
∫
|vN (ζ)|µ(dζ) = O(N−1/2).

To show that (ii) = 0, note that∫
ΩN

χk(dωN )Λ(ζ1, ξ1, dζ)−
∫
Ω

P̃k(dz) exp(f(z))Q(z, dζ)

=

∫
Z
P̃k(dz) exp(f(z))Q(z, dζ)

{∫
exp (ξ)Fk(dξ)− 1

}
,

which is 0 by Assumption 2 (a). Hence, we have concluded the proof.

Approximation power of solution functions
To solve (1), a structural assumption is made in (4) to search within Π = {πζ : ζ ∈ Rd}, i.e., solution functions of a convex
optimization problem. The quality of the solution depends on the approximation error of the solution function class as well as the
optimization error in solving (4). While the objective of our work is primarily focused on developing an evolutionary algorithm,
which has been detailed in the main paper, we also provide some preliminary study on the expressivity of this important class of
functions from an approximation theory viewpoint (DeVore and Lorentz 1993).

To provide meaningful discussions of the approximation rate, we state the assumptions on the function class (commonly
referred to as model class assumptions). Consider the class C2 as the set of functions that are continuously differentiable up
to order 2. Without loss of generality, we assume the input space S := [0, 1]ns , and we only consider scalar valued functions,
since vector-valued function can be treated as concatenation of scalar-valued counterparts. To measure the distortion rate, we



consider the uniform error as ∥f − f̃∥∞ = maxs∈S

∣∣∣f(s)− f̃(s)∣∣∣. For the purpose of demonstrating the expressivity of this
class of functions, we restrict the function class Π to be the set of solution functions of linear programming (LP) without fixing
the number of constraints or variables.
Theorem 2 (Universal approximation of C2 functions). For any target function f ∈ C2, there is a solution function π ∈ Π of an
LP with O

( (
ns

ϵ

)ns
2

)
constraints and ns + 1 variables such that ∥f − π∥∞ ≤ ϵ.

The above result establishes a universal approximation theory of the solution functions of LPs with a constructive proof. The
complexity of the construction is analyzed and compared in terms of the total number of variables and constraints to obtain an ϵ
accuracy. It is well known that neural networks have this universal approximation capacity (Hornik, Stinchcombe, and White
1989); for instance, to achieve ϵ approximation accuracy to a C2 smooth function on ns dimension, one needs O(ϵns/2) number
of neurons (Mhaskar 1996; ?). Theorem 2 puts the class of solution functions on the same grounding of neural networks in terms
of approximation capability to justify its consideration as policy functions in complex decision-making tasks.

We begin with some notations. Let CS,B,L denote the class of convex, bounded, subdifferentiable, and uniformly Lipschitz
functions on the set S:

CS,B,L :=

{
f : S → R

∣∣∣∣ f is convex, ∥f∥∞ ≤ B, and ∥v∥∞ ≤ L, ∀v ∈ ∂f(s)
}
, (21)

with positive scalars B,L > 0. We also introduce the class of max-affine functions that are uniformly bounded and uniformly
Lipschitz with at most K ∈ N hyperplanes:

MK
S,B,L :=

{
h : S → R

∣∣∣∣ h(s) = max
k=1,...,K

p⊤k s+ qk, ∥pk∥∞ ≤ L, h(s) ∈ [−Bd, B], ∀s ∈ S
}
, (22)

whereBd := B+nsL. We also denote diam(S ′) := maxs,s′∈S′ ∥s−s′∥∞ as the diameter of the set S . Recall that diam(S) := 1
by the assumption that S := [0, 1]ns .
Lemma 5. Any function h ∈ MK

S,B,L is equivalent to a solution function of an LP with K constraints and ns + 1 variables.
Furthermore, for any function of the form f = h1 − h2, where h1, h2 ∈MK

S,B,L is equivalent to a solution function of an LP
with 2K + 1 constraints and ns + 3 variables.

Proof. Suppose h(s) = max
k=1,...,K

p⊤k s+ qk. It can be seen that by introducing an extra variable t and K constraints in the form of

p⊤k s+ qk ≤ t and change the maximum to minimum, we have constructed an equivalent optimization with solution equal to
h(s). This is well-known as the epigraph formulation of the optimization. The construction for f = h1 − h2 is performed by
introducing ti and K constraints for each hi, i = 1, 2, in addition to an extra variable t3 and an extra constraint t1 + t2 ≤ t3,
with the objective to minimizes over t3.

By (Bačák and Borwein 2011), any function f ∈ C2 can be written as a DC function: f = ϕ1 − ϕ2, where ϕi ∈ CS,B,L. For
any s ∈ S and convex function ϕ, let∇ϕ(s) ∈ ∂ϕ(s) be an arbitrary fixed subgradient of ϕ at s. For any t > 0 and i = 1, 2, define
Rt := 1+ 2tL, νi(s) := s+ t∇ϕi(s) combines the point s and∇ϕi(s) weighted by t, and define Ki := {νi(s) : s ∈ S} ⊂ Rns

as an expanded set of S along the direction ∇ϕi. Note that since the subgradient of a convex function is monotone, νi(·) is
strictly monotone, and νi(s) ̸= νi(y) for any s ̸= y. This also implies that νi(·) is a bijection and its inversion is well-defined.
Let Kϵ,i ⊆ K be an

√
ϵ-net of set Ki with respect to Euclidean norm ∥ · ∥, and Sϵ,i ≜

{
ν−1
i (z) ∈ S : z ∈ Kϵ,i

}
be its preimage

corresponding to the mapping νi for i = 1, 2. Since Rt ≥ diam(Ki), by standard covering number argument (Wainwright 2019)
and the fact that ∥s∥ ≤ √ns∥s∥∞ for any s, |Kϵ,i| = |Sϵ,i| ≤

(
9nsR

2
t /ϵ
)ns/2 for all ϵ ∈ (0, 9nsR

2
t ]. Note that since Kϵ,i is an√

ϵ-net of set Ki, by definition, for any s ∈ S, there exists ŝi ∈ Sϵ,i such that ∥νi(s)− νi(ŝi)∥ ≤
√
ϵ. Hence,

∥s− ŝi∥2 + t2∥∇ϕi(s)−∇ϕi(ŝi)∥2

≤ ∥s− ŝi∥2 + 2t(s− ŝi)⊤(∇ϕi(s)−∇ϕi(ŝi)) + t2∥∇ϕi(s)−∇ϕi(ŝi)∥2

= ∥νi(s)− νi(ŝi)∥2

≤ ϵ,
where the first inequality is due to the convexity of ϕi. This implies that for any s ∈ S, there exists ŝi ∈ Sϵ,i such that ∥s− ŝi∥
is controlled by

√
ϵ and ∥∇ϕi(s)−∇ϕi(ŝi)∥ is bounded by

√
ϵ/t .

Now, consider K :=
(
18nsR

2
t /ϵ
)ns/2 and set SK,i ≜

{
x̂
(i)
1 , . . . , x̂

(i)
K

}
⊆ S such that Sϵ/2,i ⊆ SK,i. Then, we introduce the

following piecewise affine function h : S → R as

h(s) = max
k=1,...,K

{
ϕ1(ŝ

(1)
k ) +∇ϕ1(ŝ(1)k )⊤(s− ŝ(1)k )

}
− max

k=1,...,K

{
ϕ2(ŝ

(2)
k ) +∇ϕ2(ŝ(2)k )⊤(s− ŝ(2)k )

}
.



Hence, for any s ∈ S, we have that

|f(s)− h(s)| ≤
∣∣∣∣ϕ1(s)− max

k=1,...,K

{
ϕ1(ŝ

(1)
k ) +∇ϕ1(ŝ(1)k )⊤(s− ŝ(1)k )

}∣∣∣∣
+

∣∣∣∣ϕ2(s)− max
k=1,...,K

{
ϕ2(ŝ

(2)
k ) +∇ϕ2(ŝ(2)k )⊤(s− ŝ(2)k )

}∣∣∣∣
=
∑
i=1,2

ϕi(s)− max
k=1,...,K

{
ϕi(ŝ

(i)
k ) +∇ϕi(ŝ(i)k )⊤(s− ŝ(i)k )

}
,

where the last equality is because the function maxk=1,...,K

{
ϕi(ŝ

(i)
k ) +∇ϕi(ŝ(i)k )⊤(s− ŝ(i)k )

}
is a uniform lower bound of ϕi

by convexity. Let us define the selective function

ki(s) = argmin
k=1,...,K

∥∥∥ν−1
i (s)− ν−1

i (ŝ
(i)
k )
∥∥∥ ,

which selects the index of the point in SK,i such that s(i)k is closest to s as measured by ν−1
i . Since SK,i is the preimage of

Kϵ/2,i, which is, by definition, an ϵ/2-cover of Ki, we have that Then, since SK,i is an ϵ

|f(s)− h(s)| ≤
∑
i=1,2

ϕi(s)− ϕi(ŝ(i)ki(s)
) +∇ϕi(ŝ(i)ki(s)

)⊤(s− ŝ(i)ki(s)
)

≤
∑
i=1,2

∥∇ϕi(s)−∇ϕi(ŝ(i)ki
)∥∥s− ŝ(i)ki

∥

≤ ϵ

t
,

where the first inequality is by plugging in ki(s) to into the maximum operator, the second inequality is due to Cauchy-Schwarz,
and the last inequality follows from the fact that ∥s− ŝi∥ is controlled by

√
ϵ/2 and ∥∇ϕi(s)−∇ϕi(ŝi)∥ is bounded by

√
ϵ/2/t

by the aforementioned reasoning. Therefore, we have shown that h can uniformly approximate f by accuracy ϵ/t.
From K :=

(
18nsR

2
t /ϵ
)ns/2, we have ϵ = 18nsR

2
tK

−2/ns . Therefore,

∥f − h∥∞ ≤
ϵ

t
=

18nsR
2
t

t
K−2/ns .

Optimizing over t optimal, we obtain t∗ = 1
2L . Therefore, by choosing K∗ =

(
ϵ

144nsL

)−ns
2

, we have that ∥f − h∥∞ ≤ ϵ. The
proof is concluded by recalling Lemma 5.

Additional details for CityLearn
Details of optimization model
We refer the reader to (Vazquez-Canteli et al. 2020) and the corresponding online documentation3 for the detailed setup of the
competition. We will only focus on our strategy in this document. In particular, we provide details regarding the construction of
the optimization model in 3. Denote the hour index by r ∈ {1, 2, · · · , T}, where T = 24. Suppose that we are at the beginning
of hour r. Then we need to plan for the actions for the future hours up to the end of the day and execute the plan for the upcoming
hour r, a.k.a., rolling-horizon planning. Next, we describe the hyperparameters, variables, objective, and constraints in 3.

Hyperparameters. The hyperparameters are required to instantiate an optimization and are not part of the optimization
variables to be solved by an optimization algorithm.

• The hyperparameters to be set by prior knowledge include: (1) electric heater: efficiency ηehH, nominal power EehH
max; (2)

heat pump: technical efficiency ηhp
tech, target cooling temperature thp

c , nominal power Ehpc
max; (3) electric battery: rate of decay

Cf bat, capacity Cpbat, efficiency ηbat
t ; (4) heat storage: rate of decay CfHsto, capacity CpHsto, efficiency ηHsto

t ; (5) cooling
storage: rate of decay CfCsto, capacity CpCsto, efficiency ηCsto

t .

• The hyperparmeters provided by predictors include: (1) hourly coefficient of performance (COP) of heat pump COPC
t =

ηhp
tech

thp
c +273.15

tempt−thp
c

, where tempt is the predicted outside temperature for hour t; (2) solar generation EPV
t ; (3) electricity

non-shiftable load ENS
t ; (4) heating demand Hbd

t ; and (5) cooling demand Cbd
t . At hour r, the predictions of the above are

required for hour r ≤ t ≤ T . In our algorithm, the predictions are provided by simple averaging of past 2 weeks data in the
corresponding hour.

3link: https://sites.google.com/view/citylearnchallenge

https://sites.google.com/view/citylearnchallenge


• The hyperparameters to be learned by Algorithm 1 are the virtual electricity price {θt}t=1,...,24 for 24 hours. These values
are bounded between [0, 10].

Optimization variables. The variables for the optimization at hour r include:

1. Net electricity grid import: Egrid
t , T ≥ t ≥ r

2. Heat pump electricity usage: EhpC
t , T ≥ t ≥ r

3. Electric heater electricity usage: EehH
t , T ≥ t ≥ r

4. Electric battery state of charge: SOCbat
t , T ≥ t ≥ r

5. Heat storage state of charge: SOCH
t , T ≥ t ≥ r

6. Cooling storage state of charge: SOCC
t , T ≥ t ≥ r

7. Electrical storage action: abat
t , T ≥ t ≥ r

8. Heat storage action: aHsto
t , T ≥ t ≥ r

9. Cooling storage action: aCsto
t , T ≥ t ≥ r

The actions of the policy at hour r are abat
r , aHsto

r , and aCsto
r . The rest of the variables are considered as auxiliary variables for

planning.
Objective function. The objective function is given by:

|Egrid
t − Egrid

t−1|+ θtE
grid
t +

T∑
t′=t+1

(
|Egrid

t′ − E
grid
t′−1|+ θt′E

grid
t′

)
. (23)

Note that we use et for Egrid
t in the main text. Also, the above objective is used in a standard minimization problem; to make it

consistent with the maximization problem in (3), we can take the negation of the value.
Constraints. The constraints include both energy balance constraints and technology constraints.
Energy balance constraints:

• Electricity balance for each hour t ≥ r:
EPV

t + Egrid
t = ENS

t + EhpC
t + EehH

t + abat
t Cbat

p

• Heat balance for each hour t ≥ r:
EehH

t = aHsto
t CHsto

p +Hbd
t

• Cooling balance for each hour t ≥ r:
EhpC

t COPC
t = aCsto

t CCsto
p + Cbd

t

Heat pump technology constraints:
• Maximum cooling for each hour t ≥ r:
EhpC

t ≤ EhpC
max

• Minimum cooling for each hour t ≥ r:
EhpC

t ≥ 0

Electric heater technology constraints:

• Maximum limit for each hour t ≥ r:
EehH

t ≤ EehH
max

• Minimum limit for each hour t ≥ r:
EehH

t ≥ 0

Electric battery technology constraints:

• Initial SOC:
SOCbat

r = (1− Cbat
f SOCbat

r−1) + abat
r ηbat

• SOC updates for each hour t ≥ r:
SOCbat

t = (1− Cbat
f )SOCbat

t−1 + abat
t ηbat

• Action limits for each hour t ≥ r:
−1 ≤ abat

t ≤ 1

• Bounds of SOC or each hour t ≥ r:
0 ≤ SOCbat

t ≤ 1



Heat storage technology constraints:

• Initial SOC:
SOCH

r = (1− CHsto
f SOCH

r−1) + aHsto
r ηHsto

• SOC updates for each hour t ≥ r:
SOCH

t = (1− CHsto
f )SOCH

t−1 + aHsto
t ηHsto

• Action limits or each hour t ≥ r:
−1 ≤ aHsto

t ≤ 1

• Bounds of SOC or each hour t ≥ r:
0 ≤ SOCH

t ≤ 1

Cooling storage technology constraints:

• Initial SOC:
SOCC

r = (1− CCsto
f SOCC

r−1) + aCsto
r ηCsto

• SOC updates for each hour t ≥ r:
SOCC

t = (1− CCsto
f )SOCC

t−1 + aCsto
t ηCsto

• Action limits or each hour t ≥ r:
−1 ≤ aCsto

t ≤ 1

• Bounds of SOC or each hour t ≥ r:
0 ≤ SOCC

t ≤ 1

The above optimization can be formulated as a linear program and solved efficiently. For more implementation details, please
refer to our code (submitted as supplementary materials).

Additional experimental results
Here we provide the performance comparison ZO-iRL with different agents for 5 different climate zones. The best performance
was observed in the reducing the ramping costs as shown in Figure 5.



0.6 1 1.4 1.8 2.2 2.6

Climate Zone 1

Climate Zone 2

Climate Zone 3

Climate Zone 4

Climate Zone 5

Ramping

0.9 1 1.1 1.2

1-Load Factor

0.9 1 1.1 1.2 1.3 1.4

Avg. Daily Peak

0.9 1 1.1 1.2 1.3

Climate Zone 1

Climate Zone 2

Climate Zone 3

Climate Zone 4

Climate Zone 5

Peak Demand

MARLISA Random Agent SAC ZO-IRL

0.95 1 1.05

Net Consumption

0.8 1 1.2 1.4

Average Score

Figure 5: Scores for ZO-iRL and comparison with other methods, including SAC (Kathirgamanathan et al. 2020) and MARLISA
(Vazquez-Canteli, Henze, and Nagy 2020) for different climate zones. The random agent basically uniformly selects an action
within the range at each timestep.


	Introduction
	Related work

	Preliminaries
	Problem setup
	Canonical approaches and solution functions

	Policy adaptation with evolutionary search
	Guided evolutionary search

	Theoretical analysis
	Results from the CityLearn Challenge
	Conclusion and future directions
	Proof of results in the main paper
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2
	Supporting lemmas

	Approximation power of solution functions
	Additional details for CityLearn
	Details of optimization model
	Additional experimental results


