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Abstract—This survey provides a comprehensive overview
of recent advances in distributed optimization and machine
learning for power systems, particularly focusing on optimal
power flow (OPF) problems. We cover distributed algorithms
for convex relaxations and nonconvex optimization, highlighting
key algorithmic ingredients and practical considerations for their
implementation. Furthermore, we explore the emerging field of
distributed machine learning, including deep learning and (multi-
agent) reinforcement learning, and their applications in areas
such as OPF and voltage control. We investigate the synergy
between optimization and learning, particularly in the context of
learning-assisted distributed optimization, and provide the first
comprehensive survey of distributed real-time OPF, addressing
time-varying conditions and constraint handling. Throughout
the survey, we emphasize practical considerations such as data
efficiency, scalability, and safety, aiming to guide researchers and
practitioners in developing and deploying effective solutions for
a more efficient and resilient power grid.

Index Terms—power systems, distributed optimization, ma-
chine learning, real-time optimization, nonconvex optimization,
reinforcement learning, multi-agent systems, optimal power flow,
distributed energy resources

I. INTRODUCTION

The high penetration of distributed energy resources (DERs)
introduces increased complexity and uncertainty into power
system operation, raising concerns about power quality, volt-
age issues, stability, privacy, and cybersecurity [1]-[4]. Dis-
tributed optimization and learning techniques offer a promising
solution by enabling localized decision-making and parallel
computation, potentially enhancing efficiency, data privacy,
real-time response, and resilience to cyberattacks and com-
ponent failures, while also alleviating communication bottle-
necks. Machine learning (ML), including deep learning (DL)
and reinforcement learning (RL), has emerged as a powerful
tool for handling nonlinearities and uncertainties inherent in
energy grids [5]. The synergy between distributed optimization
and ML, particularly in distributed learning techniques, holds
the potential to revolutionize power system operations.

This survey aims to be a valuable resource for researchers
and practitioners across power systems, control theory, op-
timization, and ML, offering insights into the application
of distributed optimization and distributed ML techniques
to power system problems, particularly optimal power flow
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(OPF). Building upon the foundation laid by existing com-
prehensive surveys on distributed optimization (e.g., [1]-[3],
[6]) and ML (e.g., [5]), we delve into the intersection of these
fields with a focus on the following key aspects. Specifically,
the reader would benefit from:

« A unified agent-based decomposition framework (Sec. II)
as a pedagogical tool to aid newcomers in understanding
initial formulations of various distributed optimization
algorithms for different power flow models (Sec. III).

o Recent progress in addressing nonconvex problems
(Sec. III), focusing on methods with practical benefits
for power systems, such as ADMM variants (modified
forms of the classical ADMM—multi-block, proximal,
asynchronous, or accelerated—that lower per-iteration
cost and tolerate non-ideal communication), ALADIN,
and other promising approaches (e.g., distributed interior-
point methods).

« ML applications to distributed OPF, including distributed
DL/RL (Secs. IV-A and IV-B), multi-agent RL. (MARL)
(Sec. IV-C), and the synergy between optimization and
ML in learning-assisted distributed optimization (Sec.
IV-D) i.e., distributed optimizers that incorporate ML
models into their update rules to improve convergence
or solution quality.

e The first comprehensive survey of distributed real-
time OPF (RT-OPF) (Sec. V), highlighting connections
to decomposition techniques (Sec. III), the role of
real-time measurements in algorithm design, and chal-
lenges/advances in handling time-varying conditions and
constraints. We also explore potential cross-pollination
with low per-iteration cost algorithms such as ADMM.

Throughout this survey, we emphasize the practical chal-
lenges of applying distributed optimization and ML techniques
to power systems. We highlight how recent research addresses
these challenges in various contexts, such as ensuring data
efficiency and safety in DL for OPF (Sec. IV-A), tackling the
issues of nonstationarity, partial observability, and communica-
tion efficiency in MARL (Sec. IV-C), and guaranteeing safety
and stability constraints in distributed RT-OPF (Sec. V). By
distilling key ideas from recent research advances, we aim to
provide guidance for both researchers and practitioners. We
conclude by identifying key challenges and future research
directions (Sec. VI) to inspire further innovation in the field.

While this survey offers a comprehensive overview of
the key areas outlined above, it does not cover all aspects
of distributed optimization and ML for power systems. We
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Fig. 1. Distributed SDP relaxation for 6-bus power network. (a) Network partitioned into regions R (blue, buses 1-3) and R2 (green, buses 4-6), with
boundary buses 3 and 4 and decomposed view showing 7R1 with local buses 1,2, 3 plus shared bus 4, and R2 with local buses 4, 5,6 plus shared bus 3. (b)
Left: Overlapping graph showing shared buses 3 and 4. Right: Decomposition of global PSD matrix X > 0 into submatrices X[R1] = 0 and X[Rz2] = 0,

with consensus constraints ensuring agreement on shared variables.

refer readers to existing surveys for technical details on the
original OPF formulation and its convex relaxations (e.g., [1,
Sec. 1I-B], [7, Sec. II]), specific problem formulations for
distribution systems (e.g., volt/var control and retail markets)
[3], distributed optimization for discrete decision variables [6],
and centralized RT-OPF methods [8].

II. A UNIFIED DISTRIBUTED FORMULATION OF OPF

A. Agent-based Decomposition and Consensus Formulation

Consider a power network represented as a graph G(N, £),
where N denotes the set of buses, and L represents the
set of transmission lines connecting these buses. To enable
distributed optimization, we partition the network into K
regions Rq,..., Rk, each managed by a separate agent, as
illustrated in Fig. 1(a).

In this decomposition, each agent is responsible for its
local region and maintains local variables corresponding to
the electrical states of the buses within that region. To ensure
consistency at the boundaries between regions, agents also
maintain copies of the boundary variables from neighbor-
ing regions. These copies are virtual constructs used solely
for computational purposes to facilitate coordination among
agents; they do not represent any physical components in the
power system.

For each region Ry, we define N}° C AN as the set of
local buses within region k. The set N3had C A/ consists of
buses that are at the boundaries of region k and are shared
with neighboring regions. The decision variables for region
Ry, are denoted as xj, = (J;lk?cal, xihare‘l), where a:llfcal represents
the electrical states of local buses, including variables such as
voltage angles, voltage magnitudes, active power injections,
and reactive power injections. The vector 23" consists of
the copies of the electrical states of the shared buses from
neighboring regions. By maintaining these copies, agents can
coordinate with their neighbors to ensure that the values of
shared variables are consistent across the network. We use
xg[i] to denote the i-th entry of zy, X|[¢,j] for the entry at
the i-th row and j-th column of X, and X[I] for the principal
submatrix of X indexed by I.

The distributed OPF problem can be formulated as:

K
ka(wk)
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K
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where fi(x) is the local cost function for region Ry. The
consensus constraint (Eq. 1b) ensures consistency in the shared
variables between regions. The coupling matrix Ay associated
with region Rj; encodes the consensus constraints for all
shared buses in Ry. This constraint enforces equality of
electrical states (such as voltage angles and magnitudes) at the
shared buses across neighboring regions, effectively coupling
the subproblems while allowing for parallel computation.

The local feasibility set &} for region Ry is defined as:
Xk = {.Tk : hk(:ck) = O,Qk(ilfk) < O} where hk(xk) =0
represents the nonlinear equality constraints, including power
flow equations within the region, and gx(x) < 0 represents
the inequality constraints, encompassing operational limits on
physical variables such as voltage magnitudes, power genera-
tion limits, and line flow constraints. This formulation allows
each region to handle its local constraints independently while
maintaining system-wide consistency through the consensus
constraints. '

1) Distributed Nonconvex Formulation: In region-based
decomposition for AC OPF (e.g., [9]), the nonconvex nature
of the AC OPF problem arises from the nonlinear power flow
equations represented by hy(xx) = 0. An alternative approach,
known as component-based decomposition [10], [11], con-
siders each network element (generators, transformers, loads,
transmission lines) as an individual agent. This method offers
a finer granularity in problem decomposition compared to the
region-based approach.

2) Distributed SDP Relaxation: The semidefinite program-
ming (SDP) relaxation of the OPF problem introduces a matrix
variable X € HW!| (where H is the set of n x n Hermitian

'While this consensus-based formulation is general, certain problem struc-
tures, such as TSO-DSO coordination, are often better captured by alternative
frameworks like hierarchical or bi-level optimization, discussed in MARL
(Sec. IV-C) and RT-OPF (Sec. V) contexts.



matrices and |A] is the number of buses) to represent the
outer product of the voltage phasors, i.e., X = UU*, where
U e CWI is the vector of complex numbers of size |A/].
The matrix X is symmetric and positive semidefinite by
construction. The SDP relaxation drops the rank-1 constraint
on X, replacing it with the PSD constraint X > 0. For the
distributed formulation, each region can correspond to a “bag”
of nodes in a tree/chordal/clique decomposition of G [12] (as
illustrated in Fig. 1(b)). For each agent k£ € K, the local
variable x) is the principal submatrix X([R;] € HI®+l of
X, indexed by the buses in subregion Rjy. Within z, the
consensus variables are the entries corresponding to the buses
that appear in neighboring bags of the tree decomposition,
i.e., separator sets. The consensus constraint (Eq. 1b) ensures
consistency of these entries across bags (as shown in Fig.
1(b)). If the optimal solution to the SDP relaxation is rank-
1, it solves the original OPF problem, i.e., the relaxation
is exact. In practice, even with higher-rank solutions, near-
optimal solutions to the OPF can often be constructed. The
local constraint set X}, with the addition of the PSD constraint
X[Rg] = 0, is convex under the SDP relaxation.

3) Distributed SOCP Relaxation: In second-order cone
programming (SOCP) relaxation, power flow equations use
branch power flows and voltage magnitudes, derived from
SDP relaxation by imposing additional constraints on X while
removing the X > 0 constraint. SOCP constraints have a
simpler structure and can be handled by specialized solvers.
For radial networks, the SOCP relaxation achieves exactness
under mild conditions [13]. In this topology, each bus acts
as an agent with local variable xj, encompassing squared
voltage magnitude, net complex power injection, branch power
flow, squared branch current magnitude to its ancestor, and
local copies of neighbor variables. The local constraint set X},
includes the SOCP constraints.

4) Communication Topology and Protocol: Communica-
tion topology, represented as a directed/undirected graph,
determines agent information exchange patterns. Common
structures include m-hop neighbor distributed networks, star
networks with central coordination, and hierarchical net-
works with level-based communication. The information
exchange protocol specifies shared data types, frequency,
and timing (e.g., primal/dual variables), incorporating syn-
chronous/asynchronous updates, event-triggered schemes, and
time-varying graphs [2, Sec. 4].

III. NONCONVEX DISTRIBUTED OPTIMIZATION
TECHNIQUES

A. ADMM and Variants

The distributed OPF formulation (Eq. 1) can be interpreted
as a multi-block extension of the classical two-block ADMM
[14], extending it to handle K blocks of variables {xy}rex
with separable objectives { f}rex and consensus constraint
(Eq. 1b). While ADMM is naturally suited to address both lo-
cal and consensus constraints, its direct multi-block extension
may fail to converge [15], necessitating further modifications.
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Fig. 2. Distributed optimization method relationships, color-coded by infor-
mation use: first-order (white), second-order (blue), and hybrid approaches
(transition blue).

Problem 1 is suitable for primal decomposition, since fixing
coupling variables decouples the problem into subproblems.
Thereby, it can be reformulated as a two-block problem:
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where we introduce the auxiliary variables z = {zj }rex

to facilitate consensus update. This allows exploiting classical
ADMM on the blocks x and z, with the primal update of x nat-
urally decomposing across agents k € K. Also, the slack z up-
date admits a closed-form solution, i.e., z,i“ = Ak:r};“ —b —
d*1, for all k € K, where d'*! = L (3, o Araj " —b) is
the average violation of the coupling constraint (Eq. 1b). The
primal update is:

z fr(ze) + (AT (Apz)

+ gHAm ~ At +dt?, Yk ek,

= arg min
TR EX)

which can be performed in parallel by agents, and the
dual update is: At! = A 4 pd't!, where A\, are the
dual variables associated with (Eq. 1b) and p > 0 is
a penalty parameter. Problem 1 is also amenable to dual
decomposition, because relaxing the coupling constraint de-
couples the problem into subproblems. We introduce La-
grange multipliers A and formulate the Lagrangian function:
L(.’IJ,)\) = Zkelc fk(.'L‘k) — /\T(Zkelc Apxy — b) and the
resulting dual problem: miny Y, o, f7(ALA) — b' A, where
filz) = supmk{szk — fe(zg) : xp € Xy} is the Fenchel
conjugate of fi under the assumption of a bounded convex
subset X};. This problem is well known as consensus optimiza-
tion, where the sum of K objectives is coupled through the
consensus variable A, and can be handled by the classical two-
block ADMM via introducing local copies of A = {\}rex
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Applying ADMM yields the dual consensus ADMM
implementation [16], with the primal updates: as';jl
argming, cx, fr(zr) + mw‘lkxk — %b - wh +
PYjen NS + AP and N = W(Akxz — Lb -

wy) + m > ien (Ah +XL), and the dual update wj" =
wi + ijeNk,()‘}; - A;)

The above variants of multi-block ADMMSs, known as
parallel ADMM and dual consensus ADMM [16], have been
applied to cost allocation in peer-to-peer electricity markets
[17], black-start and parallel restoration [18], and distributed
OPF [19]. Other multi-block modifications include: 1) Proxi-
mal regularization: Adds terms of the form 3||z), — 2}[|3, to
subproblems, with P, > 0. For example, proximal Jacobian
ADMM [20] requires Py = p(K — l)A—krAk. to be sufficiently
large for convergence. Since the proximal coefficient matrices
Py are generally required to be linearly growing with the
number of agents K, a slower convergence is likely for larger
problems. 2) Prediction-correction ADMM: Variants such as
Jacobian ADMM with correction step [21] generate a pre-
diction using Jacobian ADMM and then use correction steps
for convergence with O(1/t) iteration complexity. 3) Block-
wise ADMM: Variants such as [22] artificially split variables
into two groups and apply two-block ADMM, often with
smaller proximal coefficients than proximal Jacobian ADMM,
potentially leading to faster convergence. This is demonstrated
in coordinated control for microgrid clusters [23].

1) Accelerated ADMMSs: Accelerated ADMMSs enhance
convergence rates, reducing iterations and communica-
tion. Fast ADMM employs Nesterov acceleration, achiev-
ing O(1/t%) convergence for strongly convex problems ver-
sus O(1/t) for classical ADMM, though convergence anal-
ysis for general problems remains open. Existing tech-
niques [24] modify primal-dual sequences via @'f! =
acc(w!'TH wh wi=t . .)), where w!® = {x! A'} represents
primal-dual updates and “acc” denotes acceleration. A guard
condition ensuring monotonic decrease of the combined resid-
ual is introduced for convergence [24]. The second-order infor-
mation of the dual function enables Newton-step acceleration
of dual updates [25]. Connections between accelerated ADMM
variants and continuous-time dynamical systems establish con-
vergence rates through Lyapunov analysis [26]. Moreover,
a second-order dynamical system with vanishing damping
yields various inertial parameter rules, including Nesterov
acceleration, under suitable time discretization [27]. These
methods are effective for economic dispatch [28] and AC/DC
networks [29].

2) ADMMs with Low Iteration Complexity: ADMM vari-
ants reduce per-iteration complexity through approximations
and proximal terms (e.g., ||z — #'||? to control approximation
accuracy). Linearized ADMM uses local linear approximations

for simpler updates via projected gradient steps or proximal
mappings [30], [31]. For nonconvex problems, bounded pri-
mal and dual updates are typically required to construct a
sufficiently decreasing and lower bounded Lyapunov function
[31]. Stochastic ADMM performs gradient-like iterates with
noisy gradients of the augmented Lagrangian (AL) function
[30], which is useful when explicit functions are unavailable;
however, the high variances of stochastic gradients lead to a
convergence rate gap: O(1/+/t) for stochastic ADMM versus
O(1/t) for its deterministic counterpart. To address this issue,
variance reduction techniques have been proposed, including
a stochastic path-integrated differential estimator [32], further
combined with acceleration techniques [33]. For instance, [34]
provides a unified framework for inexact stochastic ADMM
covering several well-known algorithms. These variants typi-
cally require Lipschitz differentiable objectives and sufficient
proximal coefficients to bound inexact update errors.

3) ADMMs with Non-ldeal Communications: Modern
power systems are susceptible to random link failures due to
network congestion, infrastructure failures, cyber attacks, and
privacy-induced noise. ADMM performance in unbalanced
distribution networks degrades significantly under high levels
of communication failure and noise [19]. Several ADMM vari-
ants address this through flexible agent activation mechanisms
and asynchronous updates. Asynchronous updates enhance
computational efficiency by reducing idle time from delays
and packet losses [35].

Formally, an asynchronous ADMM implementation tailored
for the distributed optimization formulation in (Eq. 2) proceeds
as follows. Each agent k asynchronously updates its local
variables according to:

xfj“ = arg min fi(zx) + ()\Z’“)T(Akxk — 2k —by)
TR EX

+ Sl Awer — 2 = b,
AFFE =N 4 p (A — 20k — b))

and immediately communicates the updated information to
neighboring agents. Each agent maintains a local iteration
counter t; and updates the local consensus variable z; upon
receiving updated boundary information from a sufficient
subset of its neighbors. (e.g., a fraction p of neighbors, or
subject to a maximum delay 7). The update is defined as:

At = argmin (V)T (At - 2 by)
G Akt == bl 5 -

A master node sets a maximum tolerable delay 7 for each
worker, proceeding with updates upon receiving sufficient

worker responses while enforcing delay bounds. There is often
a trade-off between the number of iterations and waiting time,
influenced by the delay bound 7 and partial synchronization
mechanism [35]. Communication problems can be modeled
as a time-varying network with asynchronous updates [36].
An asynchronous dual decomposition algorithm has been
proposed and compared favorably with existing methods in



coordinating DERs under communication asynchrony and
computation errors [37]. Additionally, a data server with its
own clock cycles to handle asynchronous data exchange for
local consensus has been used in [38] to replace the central
aggregator in [35], potentially facilitating easier integration
into communication networks.

4) Other Considerations: A proximal ADMM variant en-
ables autonomous agent step size selection using only local
information, regardless of communication topology [39]. A
scaled dual descent AL framework approach handles general
nonlinear equality constraints with improved theoretical com-
plexity guarantees [40].

B. Augmented Lagrangian Alternating Direction Inexact New-
ton (ALADIN)

ALADIN [41] addresses the nonconvex problem (Eq. 1)
by solving decoupled problems in primal variables, similar
to ADMM, while also requiring an approximation of the
constraint Jacobian and Hessian to solve a coupled Quadratic
Programming (QP) problem.

Consider local constraints X}, in (Eq. 1), where hy and g
are assumed to be twice continuously differentiable. The key
steps involve solving decoupled problems to either local or
global optimality for each agent k € K:

min - fi(an) + (A, N) + 5o — 2t
hk(l‘k) = 0,

where p > 0 is a penalty parameter, X5 > 0 is a weighting
matrix, and A is the dual variable. After solving (Eq. 4), the
approximations of the constraint Jacobian @gk(x(tﬂ)) and
Hessian Hy, ~ V2, (fi(xh) + 9 gu(al™) + il hu(el™)
are computed, where 7 and py are the Lagrange multipliers;
compared to ADMM, the use of more accurate Hessian and
Jacobian approximations can reduce iterations at the cost of
increased per-iteration complexity.

When exact second-order information is used, ALADIN can
drive primal and dual residuals to machine precision, yielding
solutions that are numerically indistinguishable from those of
a centralized interior-point solver. With cheaper quasi-Newton
updates (e.g. block-BFGS) the coordination QP is solved
with an inexact curvature, yet empirical studies such as [42],
[43] show objective gaps below 0.01% relative to the central
baseline. Thus the cost of using approximate second-order
information is merely a negligible loss in optimality—well
inside normal dispatch tolerances—while reducing communi-
cation and computation per iteration.

Subsequently, a coupled coordination QP is solved at a
central node:

. 1
ain 3 (el + (Baw V) + el + Sl
ke

“4)
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Finally, the primal and dual variables are updated as xfjl =

zl + Azy, and N = N+ p (3, Apai™ —b) . Under

mild assumptions, ALADIN converges to a local minimizer of
the nonconvex problem from any feasible starting point when
combined with the proposed globalization strategy [41]. Under
suitable conditions, it achieves a quadratic or superlinear local
convergence rate [41], matching centralized sequential QP
methods.

ALADIN has been applied to AC OPF and power system
analysis [43], [44], AC/DC hybrid systems [42], and het-
erogeneous power systems in both single-machine numerical
simulations [44] and geographically distributed environments
[45]. However, its increased per-step communication and
scalability issues, particularly with inequality constraints, are
drawbacks; [42] shows an improved ADMM outperforms
ALADIN in scalability for the AC OPF problem. To address
these, [43] employs approximation methods for Hj using
blockwise and damped BFGS updates. Bi-level distributed
ALADIN [46] eliminates the central coordinator in the coupled
QP step by solving it with decentralized ADMM or conjugate
gradient. Recent advancements include improved computing
times for large-scale AC power flow problems using second-
order corrections for linearization errors of active constraints
in (Eq. 4) [47].

C. Distributed Interior Point Method

The Distributed Interior Point Method (IPM) is a promising
approach for solving the large-scale nonconvex OPF problem.
To overcome the limitations of extensive communication and
central coordination of existing distributed second-order meth-
ods [48], distributed IPM reformulates (Eq. 1) by replacing
inequality constraints with logarithmic barrier terms in the
objective function:

(fk(xk) — K Zk ln(ék’i)>
kex

min
{zk,0n} im1
st. hg(zk) =0, gr(xg) + 0, =0, 0 >0, VkeK,
and Eq. 1b,
%)

where k > 0 is the barrier parameter, §;, =
{0k;}j=1,...miy € R™ are the slack variables. The main
challenge in decentralization is solving the coupled linear sys-
tem arising from the Karush-Kuhn-Tucker (KKT) conditions
of (Eq. 5) in each Newton step. This difficulty is primarily
due to the coupling constraints (Eq. 1b). To address this,
methods have been developed to decentralize the computation
of Newton steps. In [49], an incremental ADMM-based IPM
is presented for distributed OPF with discrete variables. This
approach consists of outer-loop iterations using an extended
IPM that forms regional linear correction equations capturing
the coupling relationships between neighboring areas. The
inner-loop iterations employ ADMM to compute primal-dual
directions in a distributed manner, allowing each region to
solve its Newton step locally while coordinating with others
through shared variables. Another strategy, proposed in [50],
involves a two-stage optimization framework that decomposes
the power network into a master network and subnetworks.
By incorporating barrier terms into the subnetwork problems,



the second-stage value function becomes differentiable with
respect to the master problem variables. This smoothing facil-
itates the use of efficient nonlinear solvers based on primal-
dual IPMs, which achieve fast local convergence because
each outer iteration is a full Newton step on the KKT
system (quadratic convergence near a KKT point), and they
remain communication-light in a distributed setting because
the power-grid’s sparse topology results in a bordered block-
diagonal KKT matrix. This structure allows the most intensive
computation—matrix factorization—to be parallelized for each
block (area), limiting communication to the small set of border
variables that couple the system.

IV. DISTRIBUTED MACHINE LEARNING TECHNIQUES
A. Deep Learning for Distributed OPF and Related Problems

Deep learning can accelerate distributed OPF computations,
with neural networks emulating AC OPF solvers to achieve
near-optimal solutions in milliseconds [53]. Many distributed
OPF methods employ direct prediction (Fig. 3(bl)) to map
grid conditions to control setpoints, known as solution func-
tions (see [54] for Model Predictive Control (MPC) and DL
connections). These approaches provide fast approximate so-
lutions with minimal optimality loss and constraint violations
[55], enforced via penalty terms [55] or primal-dual methods
[56]. Decentralized schemes train local ML models to predict
setpoints from local measurements [57]. Recent advancements
[58] extend this by using DL to emulate Volt/VAR dynamics,
providing scalable optimal design of incremental Volt/VAR
control rules capturing Volt/VAR dynamics through recursive
neural networks.

Incorporating uncertainty is vital due to renewable genera-
tion variability. This is addressed through chance constraints
[59] or conditional value-at-risk (CVaR) [60], which provides
a convex surrogate for chance constraints. Graph neural net-
works (GNNs) incorporate grid topology [61], with robustness
against anomalous and missing measurements [62]. Attention
networks have been employed alone [63] or with Convolu-
tional Neural Networks (CNNs) [64]. Post-training, GNNs and
CNNSs enable distributed predictions using local computations
based on limited neighboring information. Data-driven meth-
ods depend heavily on training data quality and coverage, with
out-of-sample robustness and constraint satisfaction remaining
key challenges due to frequent topology changes and DER
uncertainty. Fig. 3 provides a visual overview of the spectrum
of ML integration in optimization, ranging from enhancing
existing algorithms (e.g., Learning-Assisted Optimization) to
fully replacing them with ML models (e.g., Direct Prediction).
The choice of approach depends on factors such as the desired
level of computational speed, the need for generalization to
new problem instances, and the specific characteristics of the
power system application, as illustrated in Fig. 4.

1) Data Efficiency and Scalability: Sobolev training en-
hances data efficiency by incorporating sensitivities of the OPF
solution function into the regression process [65]. Instead of
the “OPF-then-learn” paradigm, decentralized policies can be
directly integrated into the OPF problem (“OPF-and-learn”).

For instance, [56] learns distributed nonlinear inverter con-
trols via a deep neural network (DNN) with individualized
inputs and partially connected layers, formulated under a
chance-constrained framework and solved through gradient-
free learning. To address scalability, [66] decomposes the
power network into regions, first predicting coupling variables
and then training region-specific models in parallel—scaling to
large systems (up to 6700 buses) while maintaining feasibility
and reducing training time.

While not yet widely explored in the context of distributed
OPF, meta-learning approaches, as shown in Fig. 3(b4), hold
promise for further enhancing data efficiency and adaptability
by “learning to learn” across diverse tasks, enabling rapid
adaptation with minimal data. Although direct applications
in distributed OPF are limited, related works in other prob-
lems have demonstrated the effectiveness of meta-learning for
improving generalization and sample efficiency in complex
optimization problems. For instance, [67] introduces a voltage
control strategy that adapts to faults using feature extraction
and selective data filtering, while [68] proposes a meta-
learning framework enabling rapid retraining for new OPF
topologies. Similarly, [69] combines meta-strategy optimiza-
tion with deep reinforcement learning (DRL) for emergency
control, outperforming state-of-the-art DRL and model predic-
tive control methods. Extending these advances to distributed
OPF represents a promising direction for future research.

2) Constraint Satisfaction: Feasibility in distributed OPF
is crucial for ensuring that operational decisions adhere to
physical, regulatory, and safety constraints under dynamic
conditions. Key constraints in this context typically involve
maintaining voltage limits, adhering to power flow limits
on transmission lines, ensuring generator output limits are
not exceeded, and upholding system stability. The following
outlines various approaches designed to address feasibility in
power systems: 1) Restricted feasible region during training:
Modifying the OPF feasible region to encourage models to
produce strictly feasible solutions [70]. 2) Active set predic-
tion: Predicting active constraints and solving a reduced DC
OPF problem [71]. 3) Physics-informed models: Incorporating
physical constraints into the loss function via penalty terms.
In general, this approach is efficient at reducing, but not
eliminating, feasibility violations and therefore have recently
been combined with feasibility restoration methods (discussed
next) [62], [64]. 4) Feasibility restoration: Post-processing or
projection onto the feasible space using power flow solvers,
e.g., predict-and-reconstruct in [55]. 5) Implicit layers and
gauge mappings: Embedding feasibility restoration within
the model using projection or gauge (one-to-one) mappings
[72]. 6) Control-theoretic safe synthesis: Applying control-
theoretic tools to define a feasible set for neural network
weights that satisfy constraints [73]. Each approach has trade-
offs. Methods 1 and 2 simplify learning but may struggle
with complex feasible spaces or yield infeasible solutions.
Methods 3 and 4 effectively reduce violations but lack strict
guarantees. Bridging this gap, [74] propose a framework to
establish worst-case guarantees for neural network predictions



TABLE I

COMPARISON OF DISTRIBUTED OPF METHODS

Communication per itera-
tion

Computational cost per itera-
tion

Low: exchange of primal/dual
variables with neighbors or
central hub.

Low to moderate: small local
solves; many iterations may be
needed.

Method Convergence (guarantees / rate)  Scalability

ADMM &  Convex: global convergence, of- Highly scalable: local subprob-

Variants ten O(1/k); nonconvex: local lems solved in parallel; scales
KKT point under assumptions. with size of local regions.

ALADIN Nonconvex: local KKT; locally Moderate: local NLPs paral-

quadratic rate near optimum;
global convergence with line
search [41].

lelized, but central coordination
QP size grows with coupling.

High: each agent sends sends
primal solution and (approx.)
Jacobian/Hessian; coordinator
returns duals.

High: each iteration includes full
NLP solves and a global QP;
total iterations small.

Primal-Dual

Superlinear or quadratic local

Good when exploiting sparsity;

Moderate: communication per

Very high: Newton steps require

Interior- convergence; polynomial itera- scales with number of tie-line = Newton step involves bound-  solving large sparse systems;
Point tion complexity. buses [49], [50]. ary variables and residuals. mitigated by parallelization.
ML-based DL: Empirical only. Hard feasi-  High for DL with local models; = Low-moderate: DL requires High training, very low
methods bility via safety layers/projection. = moderate for distributed RL; minimal exchange post- inference: DL has expensive
(DL, RL, & MARL: Nash equilibrium in co- MARL: combinatorial growth training; distributed RL  training but millisecond
MARL) operative settings, though nonsta-  in joint action spaces but pa- exchanges small gradients; inference; RL moderate online
tionarity challenges convergence  rameter sharing helps. MARL enables selective learning; MARL  moderate
[51], [52]. communication. per-agent, scales with agents.
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Fig. 3. Integration of ML and optimization. (a) Traditional optimization (direct problem solving) vs ML (learning from data). (b) Four ML-enhanced
approaches: 1. Direct Prediction: ML maps parameters to optimal solutions; 2. Algorithm Unrolling: Converting iterative algorithms to trainable networks;
3. Learning-Assisted Optimization: ML enhances traditional algorithms for distributed control; 4. Meta-Learning: Training general strategies for rapid
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Fig. 4. [Illustration of the four categories of ML-enhanced optimization
methods, highlighting the trade-off between the degree of ML integration
(from enhancing existing algorithms to fully replacing them with ML models)
and problem generalization (adaptability to different problem types).

in OPF, providing a systematic method to ensure robust safe-
guards against constraint violations. Techniques 5 and 6 offer
principled feasibility embedding but can be computationally
expensive or rely on assumptions. Most methods are agnostic
to DL architecture and can be used to learn distributed policies
with sparse connections [56].

3) Perspective from Algorithm Unrolling: Deep learning
architectures, such as DNNs, CNNs, GNNs, or recurrent neural

networks (RNNs), can be viewed as the repeated application
of an operator F() across multiple layers [ € {1,...,m}, ie.,
F) o Fu=1) o ... o F) This is reminiscent of iterative
algorithms. For a simple illustration, the iterative algorithm
2 =g, (2 + LBT(c — B2")) can be used to solve
min § || Bz — c||3 + pl|z||1, where o,/ is the element-wise
soft-thresholding function oy(z) = sign(x)max(0, |x| — 0)
with = p/k and k usually taken as the largest eigenvalue
of BT B. We can treat each iteration as an instantiation of
the operator Frsra(zM) = op0) (Wl(l)x(l_l) +W2(l)c), where
(oW, Wl(l), WQ(I)) are learnable parameters to train from data
with z(©) as the initial point. This concept broadly connects
to algorithm unrolling [75], where optimization algorithms are
unrolled into DL architectures. By connecting to algorithm
unrolling for algorithms such as ADMM, we can potentially
develop distributed optimization algorithms that leverage the
expressiveness and learning capabilities of DL models. Fig.
4 positions algorithm unrolling as ML-enhanced optimization
with intermediate ML integration. It preserves optimization
algorithm structure while learning parameters from data, bal-
ancing traditional method interpretability with DL flexibility.



This suits problems with specific structures requiring fast
convergence.

B. Distributed RL for OPF and Related Problems

Distributed RL is well-suited for power system optimiza-
tions such as OPF, which involve high-dimensional spaces,
complex constraints, and real-time decisions. In this con-
text, distributed RL allows K agents —typically representing
individual power generating units, storage devices, or load
controllers—to operate independently or with varying degrees
of coordination to make decisions based on local observa-
tions, aiming to optimize a combination of local and global
objectives, such as minimizing cost, maximizing efficiency, or
stabilizing the grid. At time step ¢, agent k observes state
sk € S, selects action af € A according to policy T, ,
where 0}, represents the parameters of the policy, and receives
reward ¥ = R(sF,al). The environment transitions to state
sf,1 according to P(sf,|s¥, af). The goal is to find a set
of policies {mj, }#_, that maximizes the expected cumulative
discounted reward:

V({Wk}szl) = ETNP(T\{M},CK:I) [Z Z*ytrf] , (6)

k=1 t

where 7 = {s¥, a¥ rF}y, is the set of trajectory of states,
actions, and rewards for all agents, and p(7 61, ...,0k) is the
probability distribution over trajectories induced by {7, }1 .

Applying distributed RL to OPF requires consideration of
the parallel interaction assumption, as agents can influence
each other’s states and rewards. While this can suit simulation
or weakly decoupled systems, caution is needed to avoid
potential divergence under distributional shifts [76]. Despite
these challenges, insights from distributed RL, such as par-
allelization, stable learning, and simplified exploration, can
inform the development of realistic RL-based solutions for
power systems.

Enforcing OPF constraints in distributed RL. RL actions in
OPF must satisfy hard nonlinear AC power flow constraints,
making standard reward shaping or linear CMDP surrogates
insufficient. Current research converges on three complemen-
tary strategies: (i) CMDP formulations with dual variables or
penalties improve long-run compliance but allow instantaneous
violations; (ii) runtime assurance filters modify RL actions
in real-time via convex projection onto AC-feasible sets or
control barrier functions providing safety certificates [77]; (iii)
hierarchical designs where high-level RL proposes setpoints
while lower-level controllers enforce exact AC constraints
[78], [79]. Designing differentiable, back-propagatable safety
layers for large multi-area grids remains a promising research
direction.

C. Multi-Agent RL for Distributed OPF and Related Problems

MARL has shown promise for distributed optimiza-
tion/control problems, where multiple agents coordinate ac-
tions in a shared environment [51], often modeled as a
Decentralized Partially Observable Markov Decision Process
(Dec-POMDP).

In fully cooperative Dec-POMDPs, agents share a reward
function and seek a joint policy @ = {mj}rei that max-
imizes the expected discounted cumulative reward (Eq. 6)
[51]. In contrast, competitive or mixed Dec-POMDPs involve
agents with individual reward functions Rj aiming to max-
imize their own expected discounted return Vi (mp, m_x) =
ETNP(T\{TFk}le) [, 7'rt] while considering others’ policies
7_j. The resulting joint policy 7* = {7} }/_, represents a
Nash equilibrium, where 7} € arg max,, Vi (mg, 7 ).

Most works assume fully cooperative agents [S51], [52],
[80]-[86], with a few considering coordination signal design
[82], [87]. The non-cooperative setting in power system ap-
plications has been examined in online feedback equilibrium
seeking [88]. Key MARL challenges include nonstationarity
from concurrent updates, scalability from joint action space
growth, and partial observability requiring efficient commu-
nication [89], [90]. Nonstationarity and scalability can hinder
convergence to an optimal solution, while partial observability
may lead to suboptimal local decisions misaligned with the
collective goal.

1) Dealing with Nonstationarity: Centralized Training for
Decentralized Execution (CTDE) allows agents to share in-
formation during training but act based on local observations
during execution [52], [81], [82], [86]. MADDPG (Multi-
Agent Deep Deterministic Policy Gradient) [91], a popular
CTDE method, uses a centralized critic conditioned on all
agents’ observations and actions, while the actor only accesses
local information. Although primarily applied to coopera-
tive settings (e.g., [52]), MADDPG can also handle mixed
cooperative-competitive environments. Off-policy learning en-
hances stability by learning from past experiences. Examples
include MASAC (Multi-Agent Soft Actor-Critic) [83], off-
policy maximum entropy RL [80], and Twin TD3 (Delayed
Deep Deterministic Policy Gradient) [84], [92]. Maintaining
a model of other agents, as in MADDPG or using techniques
such as confederate image technology [86], is beneficial. [89]
outlines five categories of handling nonstationarity. In power
systems, the most common are ignoring (assuming stationar-
ity) and forgetting (updating based on recent observations),
with fewer works addressing response or opponent modeling.

2) Scalability: Parameter sharing, where all agents update a
single set of network parameters, improves scalability by lever-
aging data from each agent and reducing policy oscillations
[52], [92]. Integrating Graph Convolutional Networks (GCNs)
further embeds topology information [52]. Exploration strate-
gies such as parameter-space noise [85] and spatial discount
factors [81] help contain the effective action space by focusing
on local impacts. Open-source simulation platforms [51], [81]
enable benchmarking of MARL methods, with MADDPG and
TD3 exhibiting good scalability [51].

3) Handling Partial Observability: Local measurements
are commonly used to achieve distributed optimization under
partial observability [51], [52], [81], [83]. Recurrent networks,
such as Gated Recurrent Units (GRUs) (e.g., [52]) and Long
Short-Term Memory (LSTM) (e.g., [81]), can effectively en-
code history to extract relevant features. Learning a surrogate



model using Sparse Variational Gaussian Processes (SVGP)
to create a simulation environment for MARL [85] can re-
duce real-world communication and data collection. Agents
modeling other agents [86], [91] can also mitigate partial
observability.

4) Communication Efficiency: ~Communication allows
agents to share information and coordinate actions, but it
must be done efficiently. Some approaches assume no explicit
communication (e.g., decentralized training), while selective
schemes only exchange essential data, such as value/policy
[80] or encoded states [81]. In structured communication,
such as networked MARL (e.g., [80], [84]), each agent
only needs to communicate with its neighbors. Agents can
also learn communication protocols end-to-end, such as
using differentiable communication [81]. To handle agent
and communication failures, [80] proposes constructing
replacement states using historical averages and local policy
networks; [84] examine how communication topology changes
affect learning.

Incentive mechanisms encourage collaboration among inde-
pendent entities such as Distributed System Operators (DSOs)
and DERs, aligning diverse goals through incentives rather
than direct commands. Bi-level optimization integrates deci-
sions across the power system hierarchy, bridging independent
actions and collective goals. A cooperative bi-level framework
[82] uses an asymmetric Markov game and bi-level actor-
critic algorithm for real-time control. Similarly, [92] adopts
a bi-level approach balancing operational safety and market
interests. While existing approaches use penalty functions
and global reward signals to promote cooperation and align
objectives, [87] introduces the Markov Signaling Game for
strategic incentive-compatible communication under informa-
tion asymmetry, enabling efficient and stable policies.

D. Learning-Assisted Distributed Optimization Techniques

In contrast to Direct Prediction, Learning-Assisted Opti-
mization techniques, as shown in Fig. 3(b3), aim to enhance
existing optimization algorithms with ML, striking a balance
between computational efficiency and generalizability. One
powerful example of this approach is the integration of RL
with various distributed optimization methods (such as those
discussed in Sec. III) to tackle complex and stochastic non-
linear dynamic control problems. These include primal-dual
decomposition and Lagrangian relaxation, where RL optimizes
dual variables for faster convergence [79], [93]-[95]; Interior-
Point Policy Optimization (IPPO) integrates RL with IPM for
effective constraint handling [96]; and stochastic optimization
incorporates RL to manage uncertainties [95]; and adaptive
optimization [97], where RL is used to leverage and adapt the
solution function of an optimization problem [54] as a policy
function in a distributed setting.

Several studies have demonstrated the improved effective-
ness of integrating ADMM with learning methods for solving
OPF problems [98]-[100]. An asynchronous ADMM frame-
work with momentum-extrapolation prediction has been intro-
duced to manage asynchronous updates and communication

failures [98]. RNNs have been applied to predict ADMM
convergence rates, accelerating optimization while maintaining
privacy [99]. ADMM’s consensus parameter learning can
be learned, optimizing decentralized power system efficiency
[100]. Deep Q-learning has been employed to dynamically
select optimal penalty parameters in ADMM for AC OPF,
significantly reducing computational complexity [101]. While
ADMM lends itself well to learning-based enhancements,
other optimization methods from Sec. III, have also benefited
from the integration of learning techniques. The flexibility of
Learning-Assisted Optimization, highlighted in Fig. 4, allows
for tailoring ML enhancements to specific components of ex-
isting optimization algorithms, potentially leading to improved
performance without sacrificing interpretability. A comparison
of key distributed OPF methods appears in Table 1.

V. DISTRIBUTED REAL-TIME OPTIMAL POWER FLOW
AND RELATED PROBLEMS

RT-OPF leverages real-time grid data to address DER inte-
gration challenges [8]. It differs from standard OPF through:
time-varying cost functions and constraints, rapid optimal
solution tracking [102], and implicit determination of non-
controllable variables by power flow equations. Applications
range from sub-minute frequency regulation to hourly dispatch
and daily storage scheduling [8].

While earlier works laid the groundwork for RT-OPF (see
[8] for a review), recent distributed RT-OPF research leverages
local measurements for improved robustness against single
point of failure and plug-and-play integration of new grid com-
ponents [103]-[107]. A case study on a 502-node distribution
system demonstrated calculation time reduction to 2.34% of
centralized methods [107].

For distributed optimization, the transition from static to
real-time involves incorporating measurements (voltages, cur-
rents, and power flows) at the point of common coupling,
exploiting physical laws for power flow solutions, and con-
tinuous information exchange. Primal-dual updates use these
measurements for agent coordination and feasibility [103],
[108] while correcting open-loop feedforward control inac-
curacies through gradient computations. Combining precom-
puted linearized power flow models with real-time feedback
manages nonlinearities without centralized Jacobians [105],
[107], [109].

This methodology aligns with broader power system op-
timization practices, where algorithms serve as robust feed-
back controllers. Embedding optimization routines in physical
system operations enhances grid adaptability [110]. These
integrated control strategies enforce operational constraints
and manage uncertainties with reduced model information and
computational requirements, enabling resilient operations in
rapidly changing environments.

A. Optimization Methods for Distributed RT-OPF

1) Distributed Formulation and Decomposition Methods:
Real-time optimization extends static approaches by introduc-
ing time dependency in (Eq. 1). As in Sec. III, the main



techniques include Lagrangian relaxation (LR) based decom-
position, such as ADMM [103], dual ascent [105], [109], and
regularized Lagrangian of the convex relaxation [104]. KKT-
based decomposition, such as distributed interior point method
[106], and primal decomposition with consensus constraints
[111], [112] are also used.

Real-time measurements enable decoupling state sensitivi-
ties, allowing agents to predict states using local and neigh-
bor information [107]. The changes in power flow states
can be expressed as: Azy(t + 1) = Spp(t) X Apg(t) +
ZjeN;hared Sk;(t) x Ap;(t), where Axy(t+ 1) represents the
predicted changes in power flow states, Sy (t) is the sensitivity
submatrix, Apy(f) represents the changes in DER output
powers, and EjeNz})az-ed Sij(t) x Ap;(t) is the aggregated
information from neighboring areas.

Another approach implicitly decomposes the OPF problem
using learned local equilibrium functions h§ (gx,v)) to map
reactive power g and voltage v to optimal reactive power
setpoints ¢; [113]. This enables the decentralized control:
qr(t+1) = qi(t)+e(h (qr(t), vi(t)) —qr(t)), where € € [0, 1]
is the step size.

Hierarchical decomposition is also considered for coordina-
tion [108], [114]. A bi-level optimization in [115] uses upper
level for DER group setpoints and lower level for individ-
ual DER disaggregation. Unlike spatial decomposition, [108]
proposes temporal decomposition linking day-ahead and real-
time markets through time-varying bi-level optimization. This
approach requires clear connections between timescales, with
distinct techniques for different horizons (e.g., distributionally
robust optimization for day-ahead, online optimization for
real-time operation).

2) Handling Time-Variation and Constraints: A common
technique uses primal-dual gradient dynamics, viewing the
path traced by variables satisfying KKT conditions as pa-
rameters vary [8]. The key challenge in distribution is de-
coupling subproblems while maintaining coordination: [106]
uses first-order optimality conditions with boundary variables
as parameters, where agents share quadratic approximations
with a coordinator for optimal increment computation. Time-
varying conditions are also handled through receding horizon
MPC [111], [114], Lyapunov optimization [116], and online
convex optimization [8], [117].

3) Information Exchange and Local Computation: Most
distributed optimization requires a central coordinator (e.g.,
distribution management system [109], network operator
[104], [115]). Agents send action information [104] and
boundary variables [103], while coordinators broadcast dual
variables (incentive signals) [104], [108] or primal variables
(setpoints) [105] and monitor constraints [108]. Peer exchange
involves boundary information like power flow states [107],
[112] and local objective estimates for consensus [118].

Each agent’s local computation often prefers simple meth-
ods such as projected gradient [118] or closed-form ex-
pressions [106] derived from KKT conditions. This is often
achieved by leveraging appropriate linear approximations of
the AC power-flow equations [103], [112], [119]. A fixed

number of iterations of the distributed algorithm using the
previous solution as a warm start may be performed [104]. In
principle, ADMM with low-iteration complexity (Sec. III-A2)
can be used [103] with transferable convergence analysis.

4) Other Practical Considerations: Unbalanced three-
phase distribution systems utilize inter-phase coordination
strategies [112]. Non-ideal communication effects, including
delays and packet drops, show that moderate delays cause
suboptimality but not instability [109], [112], [120]. Adaptive
step size tuning accelerates convergence and avoids oscil-
lations [109]. Network size, consensus steps, and gradient
bias impacts on convergence have been assessed [118]. Local
iterative updates using gradient estimates and projection op-
timize networked nonlinear system steady-state performance
while circumventing local sensitivities and satisfying input
constraints [118]. For real-time distributed equilibrium seek-
ing, see [88].

B. Discussion of ML for Distributed RT-OPF

ML methods (Sec. IV) are inherently suitable for RT-OPF
due to the fast response capability of the learned policies based
on system states (e.g., [121]). MARL techniques (Sec. IV-C)
rely on localized information and are inherently suitable for
distributed counterparts. For instance, [122] demonstrates the
real-time computational feasibility, with an online execution
time of about 40ms for a 123-bus system.

Most papers apply offline-trained RL policies (e.g., RL
[95] or safe RL methods [77]-[79], [123]) for online control
without further adaptation. If the environment is nonstation-
ary, the offline-trained policy may not perform optimally.
Extensive pretraining with diverse conditions may help handle
nonstationary environments [121], [123]. For instance, [121]
considers uncertainties from renewable energy sources and
N — 1 topology changes during training, making the trained
agent more robust during online implementation. Safety and
stability are primary concerns in RT-OPF. Control-theoretic
approaches can be used for stability-certified RL [73]. For
safety constraints on state/action spaces, common approaches
include penalty-based methods or using Lagrangian to derive
primal-dual algorithms [78], [121], [124]. A knowledge-driven
action masking technique is introduced to explicitly iden-
tify critical action dimensions based on the physical model,
guiding the policy exploration in the safety direction [77].
A safe RL method based on Proximal-Dual Optimization-
based Proximal Policy Optimization (PDO-PPO) algorithm is
proposed [79], eliminating the need for manually selecting
penalty weights between rewards and safety violations. A
holomorphic embedding based safety layer in the RL policy
can be added to ensure the operability of the control actions
[124]. [123] introduces a supervisor-projector framework,
wherein the supervisor evaluates RL-generated actions for
safety, and the projector applies minimal modifications to
ensure operational viability. In [78], a hybrid method enhances
sample efficiency by deriving actor gradients through solving
the KKT conditions of the Lagrangian using power system
models.



For efficient utilization of computational resources and
faster solution times, existing works e.g., [120], use techniques
aligned with data parallelism in distributed ML. Despite the
promise of RL for RT-OPF, most practical implementations
rely on offline trained policies with linear constraint re-
laxations (e.g. CMDP or Lagrangian penalties). These sim-
plifications cannot fully capture nonlinear AC power flow
constraints, leading to conservative behavior or feasibility
violations. Runtime assurance architectures, such as safety
filters based on CBFs or AC power flow projections, can bridge
this gap by filtering raw RL actions through certified nonlinear
solvers while preserving learning-based adaptability [125].

VI. KEY CHALLENGES AND PROSPECTIVE DIRECTIONS

Scalability and Computational Efficiency: Distributed ap-
proaches balance communication overhead, suboptimality, and
fault susceptibility. ADMM, ALADIN, Analytical Target Cas-
cading (ATC), and Auxiliary Problem Principle (APP) com-
parisons reveal wall-time versus iteration count discrepancies
from local computation and communication overhead [126].
Practical benefits depend on communication infrastructure,
data protocols, and local/central resource balance with accu-
racy and convergence. Joint consideration of communication
and convergence is essential; data servers ensure accuracy
while quantized messages reduce overhead. Hardware-aware
design is crucial for low-resource settings.

Handling Nonstationarity, Uncertainty, and Stochasticity:
Renewable integration, dynamic loads, and evolving topolo-
gies introduce nonstationarity and uncertainty in power sys-
tems. Distributed optimization dynamics add complexity
through time-varying networks, asynchronous updates, and
varying agent mechanisms (Sec. IV-CI). Online and real-
time distributed methods with real-time data offer promising
solutions (Sec. V). A promising direction is optimization
algorithms with adaptive parameters responding to system
and agent changes in topology, synchronization, and penal-
ties. Incorporating power system domain knowledge into ML
models can improve their data efficiency and generalization
(Sec. IV-A), as demonstrated by the winning solution to the
CityLearn Challenge [97]. Data-centric Al emphasizes data
quality for robust ML models, which could be useful for
managing the integrity of distributed data.

Drawing inspiration from “antifragility”, optimization/ML
methods can be designed to withstand and benefit from uncer-
tainty and variability. Connections to meta-learning, continual
learning, and multi-objective/quality-diversity optimization ad-
vance computational antifragility [127].

Privacy: Distributed optimization involving sensitive data
exchange raises privacy concerns, as many existing methods,
such as ALADIN, involve extensive data sharing with cen-
tral coordinators, making systems vulnerable to honest-but-
curious agents and external eavesdroppers [128]. Differential
privacy offers efficient solutions, with algorithms co-designed
to balance privacy mechanisms and coordination through op-
timized stepsizes, weakening factors, and noise distributions
[128]. Quantized message exchange provides additional pri-
vacy while maintaining communication efficiency. Federated

learning (FL) enables collaborative ML training on decen-
tralized datasets without sharing privacy-sensitive data, while
also reducing communication costs [129]. To avoid exposing
important and possibly proprietary information, organizations
(i.e., local nodes) typically impose tight security constraints
on sharing modeling algorithms and data, which heavily limit
collaborations. The paper [130] is the first to introduce the
Assisted Learning (AL) framework, which is intended for
local nodes to assist each other in supervised learning tasks
without revealing any individual node’s algorithm, data, or
even task. While in FL a central controller orchestrates the
learning and the optimization, in AL, the local nodes have
protocols to assist each other’s private learning tasks by
iteratively exchanging nonsensitive information such as fitted
residuals [130]. Such distributed learning techniques align
well with the distributed structure of smart grids and can
result in more robust and effective grid operations, warranting
future research into secure and efficient aggregation protocols
tailored for the hierarchical structure of grid operators and
DER agents.

Safety, Robustness, and Cybersecurity: Distributed power
algorithms must be secure and resilient against failures, with
anomaly detection as one approach. Boundary defense mech-
anisms leveraging network sparsity to recover regions outside
attacked areas [131] is promising yet underexplored. ML
models should be safe and data-efficient, especially under
distributional shift (Sec. IV). Adapting the Al model inspec-
tor framework [132], including stress-testing with adversar-
ial examples and out-of-distribution generalization checks, is
relevant. Just as power system equipment, ML models need
periodic re-assessment and updates to maintain robustness,
requiring ongoing monitoring throughout their lifecycle in
distributed OPF systems.
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