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ABSTRACT

Modern power systems face increasing challenges from re-
newable energy integration, distributed resources, and com-
plex operational requirements. This survey examines Safe
Reinforcement Learning (Safe RL) as a framework for main-
taining reliable power system operation while optimizing
performance. We review both model-free and model-based
approaches, analyzing how different safety constraints and
architectures can be implemented in practice. The survey
explores multi-agent frameworks for coordinated control in
distributed settings and examines runtime assurance meth-
ods that provide formal safety guarantees. Applications span
various timescales, from frequency regulation to demand
management, with different safety requirements and oper-
ational contexts. Through analysis of current simulation
environments and practical implementations, we identify
remaining challenges in scaling safe RL to large power sys-
tems, handling uncertainty, and integration with existing
infrastructure.
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Introduction

1.1 Modern Power System Challenges

The ongoing evolution of power systems presents a multifaceted chal-
lenge: ensuring safe and reliable operation amidst a dynamic and un-
certain environment. This necessitates not only achieving performance
objectives but also adhering to diverse constraints encompassing opera-
tional limits, regulatory compliance, and environmental goals.

Key challenges in modern power systems include:

o Uncertainty & Variability Challenges: The integration of intermit-
tent renewables, volatile demand, climate change impacts, and
market price fluctuations introduce significant uncertainty, making
it challenging to predict and manage power supply and demand.

o Complexity € Scale Challenges: Decentralization, diverse technolo-
gies (e.g., electric vehicles), interconnected grids, and increased
digital reliance create a complex and multifaceted power system
requiring sophisticated coordination and holistic management.

e Reliability € Resilience Challenges: Reduced system inertia and
the increasing frequency of natural disasters necessitate rapid
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Figure 1.1: Safe RL for Modern Power Systems. The framework processes sys-
tem states, which may comprise of network measurements (voltage magnitude/angles
at buses, active/reactive power flows, system frequency), resource status (generation
outputs, storage SOC, RES availability), and operating conditions (load patterns,
network topology, equipment status). The Safe RL module needs to address key
challenges including safety during learning, multi-layered constraints, and uncer-
tainty handling. It determines control actions, e.g., economic operations (generator
setpoints, storage schedules), grid stability (AGC signals, reactive power control, tap
changes), and emergency control (load restoration, network reconfiguration), while
adhering to safety constraints (e.g., voltage bounds 0.95-1.05 pu, frequency ranges
59.8-60.2 Hz, thermal limits, stability margins, N-1 security). This can be typically
implemented as either a safety layer on top of RL or as a simplex architecture (see
Chapter 5). This enables various RL applications spanning economic optimization
(OPF, energy management), system stability (frequency control, VVC), and grid
reliability (load restoration, network reconfiguration).

response capabilities and robust recovery strategies to ensure grid
stability and continuity of service.

e FEnvironmental & Regulatory Challenges: Balancing the stringent
environmental goals (e.g., reduce carbon emissions) with system
stability and navigating complex regulations is crucial for ensuring
a sustainable and resilient energy future.

1.2 Overview of safe RL Applications in Power Systems

RL, with its adaptive learning capabilities, ability to handle high-
dimensional spaces, and sequential decision-making framework, aligns
well with the dynamic and complex nature of modern power grids.
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Table 1.1: Overview of Power System Applications for Safe RL. V: Voltage, Q:
Reactive Power. Time scales — RT: Real-time, S: Short-term (minutes to hours), M:
Medium-term (hours to days). System levels — D: Distribution, T: Transmission.
Action types - C: Continuous, D: Discrete, M-D/C: Mixed Discrete-Continuous.

Objective Challenges Why RL? Safety Features
OPF min. costs w/  RES uncer- fast de- V  limits, §S; M-
constraints tainty, fast cisions, line flows, D/C; T
computation adaptability  oper. limits
Energy balance sup- gen./demand adapt, learn grid stabil- S-M;
Mgmt. ply/demand, uncertainty, strategies ity, Vlevels M-D/C;
min. costs prices D/T
Freq. maintain uncertainties, adapt freq. stabil- RT; C;
control  freq. in RES dynam- to rapid ity, RoCoF T/D
range ics changes
VVC manage V V  fluctua- coord. con- V  range, S; M-
profiles, Q tions, rev. trol w/o full device D/C; D
flow power flow info limits
CLR restore criti- multi-step handle com- power flow S; M-
cal loads decisions, plexity, un- constraints, D/C; D
DER uncer- certainty stability
tainty
DNR optimize incomplete RT applica- radial, V/f M; D; D
feeder topol- info, compu- tion, handle stability
ogy tation uncertainty
EV optimize variable de- adapt to grid stabil- S-M; C; D
charg-  charging mand, RES changing ity, V levels
ing schedules integration conditions

Furthermore, RL in its multi-agent form is essential for addressing the
increasing complexity and scale of power systems, allowing for effective
coordination of distributed energy resources, including electric vehicles,
and management of intricate grid topologies. By learning from real-
time interactions with the environment and optimizing for long-term
rewards, RL has the potential to develop sophisticated control policies
that outperform traditional rule-based systems. This could lead to more
autonomous, efficient, and resilient power system operations (Fig. 1.1).

Table 1.1 outlines seven critical power system applications where
safe RL shows promise. These applications span economic optimization
(Optimal Power Flow (OPF), energy management), system stability
(frequency control, Volt-Var Control (VVC)), and reliability (Critical
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Load Restoration (CLR), Distribution Network Reconfiguration (DNR)).
The need to handle uncertainties from renewable energy sources (RES)
and variable demands, alongside the inherent complexity of power
systems, makes these applications well-suited for RL approaches.

Safety constraints are application-specific, reflecting diverse objec-
tives and operational contexts. For instance, OPF prioritizes voltage and
line flow limits, while frequency control focuses on frequency stability
and Rate of Change of Frequency (RoCoF). These constraints define the
boundaries for RL agent operation. Across all applications, violations of
safety constraints could lead to equipment damage, system instability,
regulatory non-compliance, or service disruptions.

The diversity of decision variables (continuous, discrete, mixed)
across applications influences RL algorithm selection. Additionally,
applications span transmission and distribution levels, each with unique
challenges: transmission-level applications (e.g., OPF) often involve
larger-scale considerations, while distribution-level applications (e.g.,
VVC) face higher uncertainty due to limited information.

The diverse requirements across power system applications create a
complex landscape for safe RL. Real-time transmission-level applications
(e.g., frequency control) necessitate rapid decision-making with continu-
ous variables under strict safety constraints, whereas distribution-level
applications (e.g., DNR) allow for more computational time but involve
discrete decisions and complex network topology constraints.

1.3 Safe RL: Bridging the Gap to Power System Applications

The primary challenge of applying standard RL to power systems is
ensuring safety, given the potential for catastrophic consequences in this
critical infrastructure, ranging from equipment damage and financial
losses to life-threatening blackouts. Standard RL faces limitations in
addressing power system safety due to:

o Safety During Decision-Making: One of the foremost challenges
identified is ensuring safety during the learning and decision-
making processes. As power systems operate under dynamic condi-
tions, Safe RL (SRL) algorithms must guarantee safe performance
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while adapting to real-time changes in the environment. Failure to
maintain safety can lead to critical system failures, emphasizing
the need for robust safety mechanisms in RL applications

e Multi-layered & Dynamic Constraints: Power system constraints
span various levels (e.g., physical equipment limitations, system-
level stability requirements, regulatory rules) and can change over
time, making comprehensive handling difficult for standard RL.

e Handling Uncertainties: Another significant challenge is managing
the uncertainties that are prevalent in power system operations,
such as fluctuations in demand and variability in renewable energy
sources. SRL techniques must be capable of effectively coping
with these uncertainties to make reliable predictions and decisions.
Studies have indicated that existing algorithms often struggle with
robustness in uncertain environments, impacting their practical
applicability.

o Complex Safety-Performance Trade-offs: Finding the right bal-
ance between safety and optimal performance poses an ongoing
challenge. Overly conservative safety constraints can hinder the
efficiency of power systems, while inadequate focus on safety may
lead to operational risks. Balancing these competing priorities is
essential for the successful application of SRL.

o Scalability & Uncertainty: Ensuring system-wide safety while
coordinating numerous distributed resources and handling rare
events under uncertainty poses a significant challenge.

o Integration with Fxisting Infrastructure: Integrating SRL approaches
with existing power system infrastructure also presents challenges.
Many current systems were not designed with advanced machine
learning strategies in mind, making it difficult to implement SRL
solutions directly. The need for seamless integration is critical to
harness the benefits of RL without disrupting existing operations.

These limitations reveal persistent challenges that must be addressed
by SRL to ensure safe, efficient, and reliable operations in evolving energy
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landscapes. It’s not merely an incremental improvement but a crucial
adaptation designed to address the unique safety challenges of power
systems. By prioritizing safety from the outset, SRL ensures operational
safety, regulatory compliance, and risk mitigation, thus helping pave
the way for wider adoption of RL in this critical domain.

1.4 Safe RL Formulations for Power Systems

RL is formulated as Markov Decision Processes (MDPs), defined by
the tuple M = (S, A,P,r,~, p), where S represents the state space,
A the action space, P : § x A — A(S) the transition function gov-
erning state transitions based on actions, 7 : § X A — R the reward
function quantifying the desirability of state-action pairs, v € [0, 1)
the discount factor weighing future rewards, and p € A(S) the initial
state distribution. In power systems, as illustrated in Fig. 1.1, s; € S
includes system states such as network measurements, resources status
and operating conditions, while a; € A could represent control actions
such as economic operations, grid stability and emergency control.

A common performance measure is the expected cumulative reward
discounted over the infinite horizon:

Jp(m) = Eﬂ[i v (se, at)] (1.1)
=0

Here, E,[-] denotes expectation over trajectory 7 = (so, ag, S1,...) un-
der policy m and stochastic transition dynamics P: so ~ p, a; ~
7(-|st), st41 ~ P(-|s¢,at). To make the dependence on state and ac-
tion explicit, we express the on-policy value function as V™(s) :=
Er[>5207'r(st, ar)|so = s], the on-policy action-value function (or Q
function) as QT (s,a) = Er[> 207 r(st,at)|so = s,a0 = a], and the
advantage function as A7 (s, a) = QI (s,a) — V,7(s). Another often used
quantity is the discounted future state distribution (or occupancy mea-
sure), d™(s) == (1—7) X2 v'P(s; = s|m), which allows us to compactly
express the difference in performance between two policies 7’ and 7 as

I — T = L E

1_,)/ AT(87G’)]7

! o |
s~d™ ar~T!
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where we use the shorthand a ~ 7’ for a ~ 7/(:|s). See (Kakade and
Langford, 2002) for the proof of this identity.

Safe RL, crucial for safety-critical power system applications, extends
standard RL by incorporating safety constraints, formalized through
Constrained Markov Decision Processes (CMDPs) (Altman, 2021). A
CMDP is represented as M UC, where C = (¢, §) is the constraint tuple.
Here, ¢ : S x A — R denotes the cost function associated with safety
violations, and & is the corresponding cost threshold. While we consider
single cost function for simplicity of presentation, multiple constraints
can be incorporated with individual cost function and threshold. We
define on-policy value functions V[, action-value functions @7, and
advantage functions A7 for the cost in analogy to V;™, Q7 , and AT with
c replacing r in their respective definitions.

The safe RL objective is to find a policy 7 : & — A(A) that
maximizes the expected cumulative reward J,.(7) while adhering to the
safety constraint:

max Jr(m) subject to 7 € Tgate (1.2)
s

where II is the set of all policies. Various safety formulations of m € Ilgfe
can be considered:

1. Expected Cumulative Safety Constraint: E, [} 52 v (st a)] < €.
This ensures that the expected cumulative cost remains below a
threshold &; suitable for applications where occasional breaches are
acceptable if the long-term average stays within safe limits, such
as managing thermal loading, battery lifecycle, carbon emissions,
or user comfort.

2. Expected Instantaneous Safety Constraint: Ex[c(s, ar)] < &, Vt.
This ensures the expected instantaneous cost remains below a
threshold & at all times; suitable for applications where near-
constant safety is crucial but occasional deviations are tolerable,
such as managing voltage levels or EV charging rates.

3. Almost Surely Cumulative Safety Constraint: Py [Y52 v e(sy, a) < €] =

1, where P (-) represents probability under 7 and stochastic tran-
sition dynamics. This guarantees long-term safety with absolute
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certainty. It mandates that the cumulative cost remains below a
threshold & for all possible trajectories under policy 7; essential
for critical applications like ensuring trajectory-wise grid stability,
where even rare violations can have severe consequences.

4. Almost Surely Instantaneous Safety Constraint: Prlc(st, ap) <
&) = 1, Vt. This is the strictest safety guarantee, demanding
that the instantaneous cost remains below a threshold & with
absolute certainty at every time step; crucial for critical safety
parameters in power systems, such as maintaining grid frequency
within strict limits or ensuring every action during critical load
restoration is safe and avoids further system damage.

The State Constraint can be applied to any constraint type, where the
cost function directly penalizing entry into unsafe states c(s,a) =1(s €
Sunsafe); Where Sypsafe C S is the set of unsafe states and I(-) is the
indicator function.

Cumulative constraints (1, 3) prioritize long-term average perfor-
mance, allowing for temporary violations if compensated over time.
They are suitable for slow-changing processes and systems where opera-
tional flexibility is needed. Instantaneous constraints (2, 4), on the other
hand, ensure safety at every time step, which is crucial for fast-dynamic
systems where even brief violations are critical. The choice between
these should be guided by the system’s dynamics, the criticality of
immediate safety, and the need for operational flexibility.

Expectation-based constraints (1, 2) offer more flexibility and are
generally easier to implement and solve computationally. They allow for
occasional violations, making them suitable for less critical parameters
or systems with some tolerance for safety breaches. This approach
often leads to policies with greater operational freedom and can be
advantageous in multi-objective scenarios where strict safety might
overly constrain other important objectives. In contrast, probability-
based (Almost Surely) constraints (3, 4) provide stronger, trajectory-
wise guarantees, ensuring no violations occur.! They are appropriate

!Probability-based constraints imply expectation-based ones: Py, [e(st,ar) < &) =
1 = Exlc(st,at)] < &. Conversely, expectation-based constraints can approximate
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Figure 1.2: Safety constraint selection in power system applications spans a spec-
trum, from the most stringent for critical real-time operations like frequency/voltage
regulation and system restoration, to more moderate levels for long-term planning
and scheduling, and intermediate levels for grid-user interface management such
as EV charging coordination. This adaptability of safe RL showcases its ability
to balance the need for safety with the diverse operational requirements of power
systems, ranging from strict real-time control to flexible long-term planning.

for critical safety parameters and align well with strict regulatory
frameworks. However, these constraints may lead to more conservative
policies and are typically more computationally intensive to implement
and solve. The decision should consider the criticality of the safety
parameter, regulatory requirements, available computational resources,
and the system’s tolerance for violations.

In power systems, these safety constraint formulations find applica-
tion in a wide range of control and optimization problems, balancing ef-
ficiency and safety. Critical, fast-acting systems may require probability-
based instantaneous constraints, while less critical, slower-changing
aspects can utilize expectation-based cumulative constraints. The choice
of formulation depends on factors such as safety requirements, system
dynamics, computational resources, and uncertainty characterization,
often benefiting from a combination of these approaches.

For example, Risk-Aware MDPs (RA-MDPs) introduce risk mea-
sures such as Conditional Value-at-Risk (CVaR) to model safety risk:
CVaRg (352 v e(st, ar)) < & This constraint can be viewed as a variant

probability-based ones: Ex[c(si,ar)] < & = Pr[c(s¢,ar) > &) < & by Markov’s
inequality.
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of probability-based cumulative safety constraint and has been applied
for managing risks associated with renewable energy integration and de-
mand uncertainty (Yu et al., 2024). (Wu et al., 2024) apply probabilistic
constraints to manage voltage levels, line thermal limits, and ensure
grid stability under high DER penetration, addressing both instanta-
neous and dynamic violations. These approaches offer more flexible
safety management, allowing for occasional constraint violations while
maintaining probabilistic guarantees. This is crucial in power systems
where strict constraints may lead to overly conservative or infeasible
solutions, particularly in the presence of uncertainties from renewable
sources and dynamic loads. Fig. 1.2 provides a visual representation
organized by temporal scope and safety guarantee strength.
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Safe Model-Free RL

Modern power infrastructure’s inherent complexity defies comprehensive
modeling, making it challenging to fully capture all critical system
aspects. Model-free SRL emerges as a promising approach to navigate
these challenges, offering potential solutions for power system control
where explicit system modeling is impractical or prohibitively complex.

This chapter examines the applicability and limitations of model-free
SRL methodologies in power system contexts, where operational safety
constraints must be rigorously maintained. The discussion encompasses
two primary methodological streams: primal-based approaches (Sec.
2.1.1) that attempt direct policy optimization under safety constraints,
and primal-dual approaches (Sec. 2.1.2) that reformulate constraints
through Lagrangian relaxation. The discussion then advances to method-
ological extensions that incorporate risk awareness and human expertise
(Sec. 2.1.3).

While these methods show promise in specific power system appli-
cations, their practical deployment often requires careful consideration
of computational requirements, safety verification, and integration with
existing control infrastructure. The discussion hence advances to de-
sign considerations (Sec. 2.2) and cross-cutting concerns (Sec. 2.3),

12
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Figure 2.1: Model-Free Safe RL Framework. The algorithm layer (primal-
based, primal-dual) and design and system layer (constraint handling, action space
design, and safe exploration) exhibit bidirectional influence—algorithms inform
design choices while implementation constraints guide method selection. Three
cross-cutting concerns span both layers: Safety-Performance Integration balances
optimization with constraint satisfaction; Scalability Considerations drive both
algorithmic adaptations (distributed variants, sample efficiency) and design decisions
(state-action decomposition); and Application Requirements shape both theoretical
guarantees and practical verification mechanisms. The framework emphasizes that
successful model-free safe RL requires coordinated development of theoretical methods
and practical design elements, mediated by system-wide concerns.

emphasizing the interconnected nature of algorithm development and
practical implementation in power system applications. Fig. 2.1 provides
an overview.

Notations Throughout this chapter, we build upon the notations in-
troduced in Chapter 1.4. The policy 7y, parameterized by 6, maps
states to actions, with shorthand notations m; and 7 representing
mp, and my respectively. The value functions follow standard conven-
tions: state value V7(s), action value Q™(s,a), with cost variants
V7T(s) and Q7 (s,a). For constrained optimization, we use Lagrange
multiplier A > 0 with Lagrangian function £(0,\), and constraint
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function c¢(s,a) with threshold . Policy differences are measured us-
ing Kullback-Leibler divergence Dgr,(-|-) and average KL-divergence
D (m|m;) = Egugri [Dxc 1 (m|m;)(8)], where d™ denotes the state visita-
tion distribution. Learning rates use 1 with parameter-specific subscripts
(e.g., Mo, M, Mm)- For power system elements, we denote the set of buses
by N, transmission lines by &, with voltage v; at bus j and power flow
pjj» between buses j and j'. Past experiences are stored in a replay
buffer D containing previously sampled state-action pairs. The temper-
ature parameter 7 in entropy-based methods balances exploitation and
exploration. Different indices are denoted by subscripts: ¢ for time step
(within CMDP), i for algorithm iteration, j for network buses, k for
agents/areas, and m for task (CMDP) index.

2.1 Fundamental Algorithmic Approaches

This section examines core algorithmic frameworks that ensure safety
in learning and decision-making processes, broadly categorized based
on how they incorporate safety constraints into the learning process.

2.1.1 Primal-Based Methods
Trust Region Methods

Trust region methods limit the size of policy updates to ensure stable
learning while satisfying safety constraints. These methods solve con-
strained optimization problems at each iteration of the learning process,
providing theoretical guarantees on both improvement and constraint
satisfaction.

Constrained Policy Optimization (CPO) CPO extends trust region
policy optimization to the constrained setting of safe RL (Achiam et al.,
2017). The core of the CPO algorithm is formulated as the following
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constrained optimization problem:

Ti+1 = argmax Ky gm; arT [A?Z (87 a)]
mell

1
subject to: J.(m;) + SESNdﬂi,aNﬂ[Agi(s,a)] <¢ (2.1)

D (m|m) <6,

where 7; represents the policy at iteration i parametrized by 6;, and
mi+1 is the updated policy after optimization parametrized by 6,41,
chosen within the set of parameterized policies II. J.(m;) denotes the
expected cost under policy 7;, and £ is the constraint threshold.

The objective function aims to maximize the expected advantage
of the new policy with respect to the current policy’s reward function.
This encourages the algorithm to find policies that improve upon the
current policy in terms of reward. The safety constraint ensures that
the expected cost (safety violation) of the new policy remains below
the threshold &, with the term ﬁ accounting for the infinite horizon
setting. The KL-divergence constraint limits the distance between the
new policy and the current policy, promoting stability in learning and
preventing drastic changes that could lead to performance collapse. The
motivation of KL-divergence constraint is grounded in the bound that
connects the difference in returns (or constraint returns) between two
arbitrary policies to an average divergence between them (see (Achiam
et al., 2017, Theorem 1).

To solve this optimization problem efficiently, CPO approximates it
through several steps. First, it linearizes the objective and constraints:

g{ = VGESNd"i,GNW[A:i(& a)”9=9i7 gic = VBESNdWi,aNTF [A’c”(s, a)]|9=9i

(2.2)
Here, g and g represent the policy gradient for rewards and costs
at policy parameter ;, respectively. Next, it approximates the KL-
divergence constraint using a second-order expansion:

— 1
DKL(W”WZ‘) ~ 5(9 — Qz)THZ(H — 91)

where H; = V2D (n||mi)|g=s, is the Fisher Information Matrix. It
then defines ¢; = J.(m;) — . These steps lead to the approximated



16 Safe Model-Free RL

problem:
Oit1 = argmax g9;" (0 - 6;)
subject to: ¢; + ng(Q —6;)<0
%(9 —0;)"Hy(0—0;) <6
The dual problem is then formulated as:

1 Lo 1
e —5-(gf —vg) ' H; g7 = vgf) + (vei — 509)

where A and v are dual variables. This linearization of the objective and
constraints allows for efficient optimization using standard quadratic
programming techniques. If A* and v* are a solution to the dual, the
primal solution is
* 1 -1/ r * C
0 :ez“i‘FHi (9 —v"95)-

The second-order approximation of the KL-divergence provides a more
accurate trust region than a first-order approximation, while the dual
formulation allows for efficient solving of the constrained optimization

problem, especially when the number of constraints (1 in our illustration)
is much smaller than the dimension of 6.

Projection-Based Constrained Policy Optimization (PCPO) PCPO
addresses a problem similar to CPO but decomposes the optimization
into two steps (Yang et al., 2020):

1. Reward Improvement Step:

7, = argmax Egogmi gon[AF(s,a)] st. Dgp(r|m) <6
s
2. Safety Projection Step:
Titl = arg n}inEKL(wHWg) st. Jo(m) + Egugmi gor[AZ(s,a)] <&,

The reward improvement step focuses on improving the reward,
similar to traditional trust region policy optimization. It ensures that
the policy update improves the expected reward while staying within
a trust region defined by the KL-divergence constraint. The safety
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optimization step then projects the reward-improved policy onto the
space of safe policies. It finds the closest policy w1 to the reward-
improved policy 7, that satisfies the safety constraint.

This two-step approach offers several advantages. It allows for more
aggressive reward improvement in the first step, potentially leading
to faster learning. The projection step ensures that the final policy
always satisfies the safety constraint, even if the reward improvement
step produces an unsafe policy. By separating reward improvement and
safety projection, PCPO can more easily balance the trade-off between
performance and safety.

Both CPO and PCPO represent advancements in safe RL, providing
principled approaches to policy optimization under safety constraints.
They offer theoretical guarantees on both improvement and constraint
satisfaction, making them particularly suitable for safety-critical ap-
plications in power systems where reliability is paramount. Li and He
(2022) apply CPO to distribution networks by handling mixed discrete//-
continuous actions while enforcing network constraints. Li et al. (2019)
develop a model-free CPO approach for EV charging that minimizes
costs while meeting charging demands. Xia et al. (2022) implement CPO
for decentralized frequency control in isolated microgrids, emphasizing
system stability. Zhang et al. (2024a) propose a consensus-based variant
of CPO for coordinating multiple load agents in distribution networks
with carbon emission constraints.

Dynamic Switching Primal Methods

Dynamic Switching Primal Methods are algorithms that dynamically
balance between reward optimization and constraint satisfaction in
safe reinforcement learning. These methods make real-time decisions
about whether to prioritize improving performance or maintaining safety
constraints based on the current system state.

Constraint-Rectified Policy Optimization (CRPO) CRPO is a primal-
based method that directly optimizes either reward or safety perfor-
mance based on the current state of constraint satisfaction (Xu et al.,
2021). The algorithm alternates between two update rules:
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™ + npg;  if no safety violation occurs

Ti+1 = (23)

m +npg; if a safety violation happens

Here, ny is the learning rate for policy updates, g; and gf are the
reward/cost gradients at iteration i, as defined in (2.2).

The intuition behind CRPO is straightforward: when the current
policy satisfies the safety constraints, it focuses on improving the reward.
However, when a safety violation occurs, it shifts its focus to improving
safety by following the cost gradient. This adaptive approach allows
CRPO to maintain a balance between performance optimization and
constraint satisfaction.

CRPO’s simplicity is one of its main advantages, making it easy
to implement and computationally efficient. However, it may struggle
with scenarios where there are conflicts between reward and cost gradi-
ents, potentially leading to oscillatory behavior that reduces learning
efficiency.

Project CRPO (PCRPO) PCRPO extends CRPO by introducing
a projection mechanism to handle conflicts between reward and cost
gradients (Gu et al., 2024a). When a gradient conflict occurs, PCRPO
projects each gradient onto their respective normal planes:
gT . gC B . B gC . g’f’ .
9y =9 — 95 95 =9 — Tz
i llgel1? i g™ (12

where ¢', and g are the projected reward and cost gradients, respec-
tively. The policy is then updated using a weighted combination of these
projected gradients:

g=w"g\ +wg (2.4)
where w” and w€ are weights for the reward and cost projection gradients,
respectively.

The projection step in PCRPO addresses a key limitation of CRPO
by allowing for simultaneous consideration of both reward and safety
objectives, even when their gradients conflict. This approach can lead to
more stable learning and better performance in complex environments
where reward and safety objectives frequently compete.



2.1. Fundamental Algorithmic Approaches 19

Efficiency Safe Policy Optimization (ESPO) ESPO builds upon
PCRPO by introducing adaptive sample sizes to enhance sample ef-
ficiency (Gu et al., 2024b). ESPO dynamically adjusts the batch size
based on the presence or absence of gradient conflicts:

BI(1+e*) if Z(g,g") > 90°

1Biv1| = o 3
IBl(1+e7) if Z(g%g") <90

(2.5)

In this equation, |B;| represents the batch size at iteration 4, |B| is
the default sample size, Z(g¢ ¢") is the angle between the reward and
cost gradients, and e™ and e~ are factors used to adjust the sample size
upward and downward, respectively.

The intuition behind ESPO is that when gradients conflict (i.e.,
Z(g% ¢g") > 90°), more samples are needed to make a reliable decision.
Conversely, when gradients align, fewer samples are sufficient. This
adaptive approach allows ESPO to balance between the need for accurate
gradient estimates and computational efficiency.

ESPO’s dynamic sample size adjustment can lead to significant
improvements in sample efficiency, particularly in environments where
the relationship between reward and safety objectives varies over time
or across different regions of the state space.

These Dynamic Switching Primal Methods offer a range of ap-
proaches for balancing reward optimization and constraint satisfaction
in safe RL. CRPO provides a simple and intuitive baseline, PCRPO
introduces gradient projection to handle conflicts more effectively, and
ESPO further refines the approach with adaptive sample sizes. Each
method builds upon its predecessors, addressing limitations and improv-
ing performance in increasingly complex safe RL scenarios.

2.1.2 Primal-Dual Methods

Primal-dual methods in safe reinforcement learning offer a powerful
approach to handling the complex, multi-constraint nature of power sys-
tem optimization problems. These methods formulate the constrained
optimization problem using Lagrangian relaxation, allowing for simul-
taneous optimization of the primal variables (policy parameters) and
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dual variables (Lagrange multipliers). This approach is particularly well-
suited to power systems, where multiple operational constraints such
as voltage limits, line capacities, and stability criteria must be satisfied
simultaneously. Primal-dual methods provide a natural framework for
balancing competing objectives, such as minimizing operational costs
while maintaining system security, and offer insights into the relative
importance of different constraints through the values of the Lagrange
multipliers. In the context of power systems, these methods have shown
promise in applications ranging from optimal power flow to real-time
economic dispatch with security constraints.

Lagrangian-based Extensions

Given a CMDP, the constrained problem (1.2) with Expected Cumu-
lative Constraint (J.(mp) < &) can be reformulated as an equivalent
unconstrained problem:

min max L(6,)\), (2.6)

where L£(0,\) == J,(mg) — A(Je(mg) — £) is the Lagrangian function and
A > 0 is the Lagrange multiplier.

PPO-Lagrangian / TRPO-Lagrangian PPO-Lagrangian and TRPO-
Lagrangian extend Proximal Policy Optimization (PPO) and Trust
Region Policy Optimization (TRPO), respectively, to CMDP (Ray et
al., 2019). Both methods update the policy by optimizing:

mo(als)
mi(als)

0; 11 = arg max Es grm; (AT (s,a) — ANAL(s,a))

Let #(0) = 2244 and Ay (s, a) = A™i(s,a) — AATi (s, a). The key differ-

— mi(als)

ence between PPO-Lagrangian and TRPO-Lagrangian lies in how they

constrain the policy update:
1. TRPO-Lagrangian uses a trust region constraint:

Drr(mgllmi) <6
2. PPO-Lagrangian uses a clipped objective:
Es grr, [min(k(0)Ax(s, a), clip(k(0),1 —€,1 4+ €)Ax(s, a))]
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where € is a hyperparameter (typically 0.1 or 0.2).
Both methods update the Lagrange multipliers using gradient ascent:

Ait1 = [N +ma(Je(mivr) — )]+

where 7, is the learning rate for the dual variables, and [-|4 denotes the
projection onto non-negative reals.

These methods benefit from the stability and sample efficiency
of PPO/TRPO while handling constraints through the Lagrangian
formulation. The trust region constraint in TRPO-Lagrangian provides
stronger theoretical guarantees, while the clipped objective in PPO-
Lagrangian often leads to better empirical performance and easier
implementation.

Reward Constrained Policy Optimization (RCPO)

RCPO adopts the actor-critic framework and extends the traditional
primal-dual approach by separating the timescales of critic, policy, and
Lagrange multiplier updates. The critic Q-function estimates a penalized
reward function, which allows for a single-objective optimization that
inherently balances reward maximization and constraint satisfaction.
The three-timescale approach allows for more stable learning;:

a) Fast timescale (critic update):

¢i+1 = ¢; — ’I’]¢(Z)V¢(T‘(5, a) - )\C(Sv (1) + 7@(]2()‘7 5/7 (1/) - Q(Iﬁz ()\a S, a’))2

This equation updates the critic parameters ¢ to minimize the temporal
difference error. Here, Q4, (A, s, a) is the critic’s estimate of the penalized
Q-function,

Q4(N, s,a) = Eq, 27 (s, ar) — Ae(se, ar))|so = s,a0 = a|  (2.7)

where r(s,a) is the reward, ¢(s,a) is the constraint cost, and A is the
Lagrange multiplier. This Q-function estimates the expected sum of
discounted penalized rewards, where the penalty is the constraint cost
weighted by A. This formulation allows simultaneous optimization of
reward and constraint satisfaction.
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b) Medium timescale (policy update):
Oit1 = Poli + no (1) VoEnr,[log mo(als)Qy; (A, 5, a)]]

This updates the policy parameters 6 using the policy gradient theorem.
Po is a projection operator ensuring the policy remains in the feasible
space.

c¢) Slow timescale (Lagrange multiplier update):

Air1 = [N + () (Je(mi) =€)+

This updates the Lagrange multiplier A based on the constraint violation.

Here, ng < m9 < 1) are learning rates, ensuring the updates occur
at different timescales.

In power system applications, Lagrangian-based methods have been
effectively implemented across various control challenges. Wang et al.
(2019) apply PPO-Lagrangian to Volt-VAR control, distinctively incor-
porating voltage constraints directly into the Lagrangian formulation
for distribution systems. Zhang et al. (2020b) use explicit information
from the power flow equations and operational constraints to obtain
gradients (2.2) and develop a distributed consensus-based training algo-
rithm where agents coordinate through Lagrangian multipliers, rather
than using centralized training as in standard CPO/TRPO. Hu et al.
(2024) develop the PDTD3 algorithm through RCPO, achieving near-
optimal performance with millisecond-level computation times while
managing both single-step and time-coupling constraints. The success
of Lagrangian methods in these applications stems from their ability
to handle multiple constraints simultaneously while maintaining com-
putational efficiency—particularly valuable for real-time power system
operations.

2.1.3 Algorithm-Specific Extensions: Soft Actor-Critic (SAC)

Overview of Standard SAC

The standard SAC algorithm incorporates three key ingredients: an
actor-critic architecture with separate policy and value function net-
works, an off-policy formulation that enables reuse of previously collected
data for efficiency, and entropy maximization to enable stability and
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exploration. The objective incorporates both the expected return and
the entropy of the policy (Haarnoja et al., 2018):

J(m) = Espapmar [1(5t, a0) + 7H (m(-]51))] (2.8)

where d"(s;,a;) is the state-action marginal of the trajectory distri-
bution, H(w(:|s;)) is the entropy of the policy at state s;, and 7 is a
temperature parameter balancing exploitation and exploration.

SAC employs a parametric state value function Vj, (s;) and soft
Q-function Qg, (st,at), and a policy network mp(as|s¢). While the state
value function can be estimated from a single action sample from the Q-
function and policy, introducing separate function approximator for the
soft value can stabilize training and is convenient to train simultaneously
with the other networks. The updates for these networks are:

1. Critic update: The state value function is trained to minimize the
squared residual error

T (1) = Eam |5 (Vi (50) = Bagry (@ s1:0) ~ log mo(ar]s0)?

where D is the distribution of previously sampled states and actions,
or a replay buffer. The soft Q-function is updated to minimize the
temporal difference error, a.k.a., Bellman residual:

To62) = Eioyan |5 @unlsts 1) = (r(st,1) +9Bu Vi, (s11)) |
(2.9)
Here, V3 is a target value network, where &1 can be an exponentially
moving average of the value network weights to stabilize training.
2. Policy update: The policy is updated to minimize the expected
KL-divergence with the Q-value network:

Zgy (st)

where Zy, (s¢) is the normalization factor. We can apply the reparametriza-

e )
J(6) = Byrop [Ewgw [log molarlse) — log SR 2o ‘””H

tion trick! by expressing the action as a deterministic function of a

!The reparametrization trick enables computing gradients of expectations by
transforming a sampling operation into a deterministic function of a fixed noise
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spherical Gaussian: a; = ag(g; s¢) with &, ~ N denotes sampling from
a standard normal distribution. This leads to the equivalent objective
(after dropping the participation term Zg,(s;) that does not depend on
0:

Jr(0) = Eg,op e, [log ma(ag(et; 5¢)|5¢) — Qg (e, ag(er; st))],

where 7y is defined implicitly in terms of ag.

This transformed objective can now be optimized using standard
backpropagation through both the policy network (fp) and the Q-
function network (Qg4,), providing lower-variance gradient estimates
compared to the REINFORCE estimator (Williams, 1992).

Constrained Soft Actor-Critic (CSAC)

CSAC, or primal-dual SAC, combines SAC with primal-dual methods
to handle constraints (see e.g., (Zhang et al., 2023d)):

InaxJ ZE (st,at) Ndrr (s, a¢) + TH(7([s¢))]
subject to J.(m ZE (s0,a0)~d [C(8t; ar)] < &,

where (s, ay) is the constraint cost for a state-action pair and ¢ is the
constraint threshold. CSAC introduces a cost critic @, (s, a) alongside
two Q-functions Qg, (s,a) and Q4,(s,a) to reduce overestimation bias.
The policy update becomes:

Jz(0) = Esup cn [TH (7 (+]5)) —ng% Qg;(s,a0(g;58)) +AQy (s, ag(e; 5))]

distribution. Consider computing: VgE,, .)[f(2)], where f(z) is some function and z
is sampled from a distribution gg(z) with parameters 6. The key insight is expressing
z as a deterministic transformation of a parameter-free random variable ¢ (e.g., p
can be the normal distribution):

z=go(e), e~ple)

This allows rewriting the gradient as:

VoEpe)[f(90(€))] = Epe)[Vof(go(e))]

This formulation contrasts with the REINFORCE estimator, which uses
Eq,(2)[f(2)Vo log go(2)]. While REINFORCE works for both discrete and continuous
variables, the reparametrization trick typically provides lower variance gradient
estimates for continuous variables, making it the preferred choice when applicable.
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where ag(e; s) is the reparameterized action and A is a Lagrange multi-
plier. This equation updates the policy to maximize reward and entropy
while minimizing constraint violations. The Lagrange multiplier is up-
dated as:

Air1 = [N +m(Je(mg,) — &)+ (2.10)

where 7, is the learning rate for the Lagrange multiplier.

The primal-dual formulation enables explicit handling of operational
constraints through cost critics, while the entropy regularization pro-
motes exploration of safe operating regions. For example, Zhang et al.
(2023d) applied CSAC to EV charging by designing the cost function
¢(s¢, ay) that combines both BES operational limits and EV charging re-
quirements. The action space design reduces dimensionality by grouping
EVs into sets based on charging states, transforming an N-dimensional
control problem into a two-dimensional one: BES operation and ag-
gregate charging power. A safety filter validates control actions before
execution, ensuring constraint satisfaction during both training and
deployment. This implementation shows how CSAC can be adapted
to handle specific microgrid operation challenges while maintaining
computational tractability.

Risk-aware Soft Actor-Critic (RSAC)

RSAC incorporates risk-awareness using Conditional Value-at-Risk
(CVaR):
Lr(s,a,8) <&, (2.11)

were 'z (s, a, 3) is the CVaR of the cumulative cost distribution, [ is
the risk level that can be tuned based on system requirements, and
& is the CVaR threshold that enforces constraint satisfaction. For a
Gaussian distribution, the CVaR is calculated as:

Ii(s,a,B) = Q% (s,a) + B 1C(Z7Y(B))\/VarT(s,a) (2.12)

where Q7(s,a) represents the expected cumulative cost, Var?(s,a)
captures its variance, ((-) and Z71(-) are the probability density function
and the inverse cumulative distribution function of the standard normal
distribution.
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The policy update is governed by:

Jr(0) = —Esinp,aimr (@7 (51, ar) — Tlog m(ae|se) — ALz (s, ar, B)] (2.13)

where Q)7 represents the reward-critic, 7 controls exploration through
entropy regularization, and A weights the importance of constraint
satisfaction through the CVaR term. This formulation balances the
competing objectives of maximizing performance while maintaining
safety constraints.

Through this formulation, RSAC effectively handles the stochastic
nature of renewable generation while maintaining strict operational
bounds on critical system parameters. For example, in (Yu et al., 2024),
RSAC is deployed to control a district cooling system’s mass flow rate
based on tie-line power and temperature measurements, optimizing
power smoothing while maintaining building temperatures with prob-
abilistic guarantees. This essentially creates grid-scale energy storage
from building thermal mass while ensuring occupant comfort under
uncertainty.

Human-Guided Safe SAC

The Human-Guided Safe SAC aims to incorporate human expertise into
the SAC algorithm, particularly for power systems control (Sun et al.,
2024). At each timestep, the framework dynamically chooses between
the learned policy and human guidance:

ar = I(s¢) - an +[1—1I(sy)] -atDRL,

where I(s;) is a binary indicator function that evaluates the current
state s; and returns 1 if human intervention is needed (e.g., when voltage
violations are detected) and 0 otherwise, a/'M
guided action, while a’®" is the action proposed by the learned policy.
A hybrid experience replay buffer that stores both regular transitions
and transitions where human intervention was needed. When voltage
violations occur, the buffer stores both the original unsafe transition
with a modified reward that includes a penalty, and the safe transition

represents the human-

after human intervention with the original reward.
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The policy is updated by minimizing a loss function that encourages
the policy to learn from human-guided actions while still maximizing
expected returns and maintaining high entropy:

Jr(0) = Ep[rlog mg(att1]si+1) — Qe(se, ar) + wrllmg(aetalset1) — atH%],

(2.14)
where 7log mg(asy1|s¢+1) encourages exploration through entropy max-
imization and wr||mg(ass1|st+1) — at]|3 encourages the policy to learn
from both DRL and human-guided actions, with w; > 0 denoting the
human intervention factor.

The critic networks are trained to minimize the soft Bellman residual
(2.9). Following SAC, two critic networks are employed to prevent value
overestimation, with the minimum Q-value used for policy updates.

Sun et al. (2024) studied volt/var control of photovoltaic invert-
ers, where human expertise guides the sequential correction of voltage
violations and phase unbalances. Voltage sensitivity-based guidance
rules are employed to encode domain knowledge about how reactive
power adjustments affect voltage profiles in distribution networks. This
domain-specific guidance helps maintain stability during both training
and deployment while allowing the SAC framework to discover optimal
policies that minimize power losses.

2.1.4 Strengths and Limitations of Different Approaches

Trust region methods (e.g., CPO and PCPO) provide robust theoret-
ical guarantees and stable learning for power system control through
carefully bounded policy updates, though their computational demands
can limit real-time applications in large networks. Dynamic switching
approaches (CRPO, PCRPO, ESPO) offer more straightforward imple-
mentation with better sample efficiency, but may struggle with multiple
constraints.

Primal-dual methods, particularly PPO-Lagrangian and TRPO-
Lagrangian, have shown promise in handling multiple constraints simul-
taneously, such as economic efficiency (e.g., minimizing generation costs)
and system security (e.g., maintaining adequate reserves, voltage /fre-
quency regulation). Compared to primal-based methods, the constraints
appear additively in the Lagrangian function, essentially reducing to a
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single objective. However, these methods often require careful tuning of
learning parameters and potentially suffer from temporary constraint vi-
olations during training. RCPO introduces additional stability through
multiple timescales, valuable for power systems with varying opera-
tional dynamics, though at the cost of increased complexity and slower
convergence.

Whitin the SAC-based family of methods, CSAC enables efficient
off-policy learning for grid control but may struggle with hard op-
erational constraints, while RSAC explicitly handles the uncertainty
inherent in renewable generation through CVaR, though it may be
overly conservative in maintaining grid stability. Human-guided Safe
SAC leverages valuable power system operator expertise but depends
heavily on the availability of expert knowledge and may not generalize
well to unprecedented grid conditions. The choice of method for power
system applications ultimately depends on specific requirements: trust
region methods for strict operational constraints, primal-dual methods
for managing multiple competing grid objectives, risk-aware methods
for handling renewable uncertainty, and human-guided approaches for
scenarios where operator expertise can be effectively codified.

2.2 Design and System Architecture Elements

This section bridges theoretical methods with practical power system
requirements, examining implementation approaches that have shown
promise in maintaining system safety.

Constraint Formulation and Handling

Effective constraint formulation and handling are crucial for safe RL in
power systems. Domain-specific constraints can be incorporated directly
into the RL formulation. For example:, voltage limits: vy, < v; <
Umax, Vj € N, and line thermal constraints: |p;;/| < pii™,v(j,5') € £,
where N is the set of buses and & is the set of lines. These constraints
can be incorporated into the reward function or handled explicitly in
constrained RL formulations. CVaR-based approaches, such as RSAC,

incorporate risk awareness into the constraint formulation, which is
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particularly useful for handling uncertainties in renewable energy inte-
gration and demand forecasting.

Safety state augmentation, as exemplified by Sauté MDP (Sootla
et al., 2022), transforms the constrained MDP into an unconstrained
MDP with an augmented state space, allowing standard RL algorithms
to implicitly handle safety constraints. In this method, the state space
is augmented with a safety budget:

52 = [st, 2],

where z; is the safety budget, initialized as the initial safety threshold
zp = & and updated as:

zep1 = (2t — c(s1,a1)) /7.

One advantage of this method is the plug-and-play nature, i.e., any RL
algorithm can be “Sautéed.” Also, state augmentation allows for policy
generalization across safety constraints, since the threshold is now part
of the state rather than the CMDP formulation.

Action Space Design

Proper action space design is essential for effective RL in power systems.
The action space typically contains both discrete and continuous control
variables. For instance, in the problem of optimal operation of distribu-
tion networks (Li and He, 2022), switchable capacitor banks (SCBs), the
tap position of the on-load tap-changers (OLTCs) and voltage regulators
(VRs) operate in discrete steps whereas dispatchable generators and
battery storage systems operate with continuous outputs. To deal with
the mixed discrete and continuous action space, a typical approach is
to approximate the policy by using a joint distribution:

mo(aclst) = m§(ag|se) - 7 (af|se), (2.15)

with 7§ (af|s;) and ¢ (af|s;) capturing the continuous and discrete parts
of the policy, respectively.

For discrete actions, we can use the softmax function as the proba-
bility distribution:

exp(f§(5)a)
2 exp(f§(s)a)

7d(a? = als) = (2.16)
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where f§(s)q is the a-th output of the discrete action network.

For continuous actions, we typically use Gaussian distribution with
parametrized mean function and some specification of the variance.
Also, discretization can sometimes simplify the action space:

af = round(ay /dgisc) * ddisc (2.17)
where dq4isc is the discretization step. This approach can be particu-
larly useful for actions like transformer tap changes or capacitor bank
switching.

Exploration Strategies

Safe exploration is critical in power system applications to prevent
dangerous or costly actions during learning.Entropy-regularized explo-
ration can be modified to account for safety, e.g., CSAC, where safety
cost is combined with the reward. Another approach to enforcing hard
constraints is to use a safety layer that projects unsafe actions onto the
safe action space:

aiafe = PAsafe (at)

where Ag,z is the set of safe actions. This can be implemented using
techniques like constrained optimization or barrier functions. Chapter 5
provides a deep dive into this topic.

2.3 System-Level Considerations and Future Directions

Power system applications of SRL face several interconnected challenges
spanning implementation, scalability, and adaptation. The integration
of safety constraints with performance optimization remains a central
concern, where different methods offer distinct trade-offs.

Scalability and Computational Efficiency Scalability presents a criti-
cal challenge as power systems grow in complexity. Distributed learning
approaches, particularly those using parallel actors and shared pol-
icy networks, have shown significant promise. Distributed Actor-Critic
methods scale up learning through parallel experience collection, with



2.3. System-Level Considerations and Future Directions 31

gradient updates following:

V(0 Z Ve Ji(0

where K parallel actors share pohcy parameters 6, and Jj is the policy
objective for actor k. Zhang et al. (2023a) demonstrated this approach’s
effectiveness through Distributed PPO for EV charging coordination,
achieving higher sample efficiency compared to a single-actor PPO and
faster convergence in high-dimensional EV allocation task.

Multi-Agent Reinforcement Learning (MARL) offers another scaling
approach by decomposing systems into interacting agents, each control-
ling a distinct subsystem with local policy 7y (ax|sk) (Chen et al., 2021).
The key challenge becomes balancing local optimization with global sys-
tem stability, often addressed through techniques like networked value
functions that incorporate neighboring agents’ states (Chen et al., 2021),
or consensus algorithms for policy coordination (Fan et al., 2023b). This
paradigm handles heterogeneous agents (e.g., different types of power
demands/supplies) and varying coordination levels, particularly suit-
able for modern power systems with diverse distributed resources. See
Chapter 4 for a comprehensive discussion.

Adaptation to Changing Environments Adaptation to changing sys-
tem conditions is particularly relevant in modern power grids, demanding
safe RL algorithms that can quickly adapt to evolving grid topologies,
generation mixes, and load patterns. Meta-Safe RL (Meta-SRL) ad-
dresses this challenge by framing power system control as a sequence of
CMDPs, where each task m aims to maximize expected reward Jy, ,(m)
subject to constraints Jp, .(7) < &, (see Figure 2.2 for the framework
overview). At the base level, an SRL algorithm, such as CRPO, learns
control policies for specific grid conditions by alternating between re-
ward maximization and constraint satisfaction, following the gradient
updates we saw earlier: m,, i11 = Tmi +my, OF Tm i +NmGrm, Where g,
and ¢¢, are the reward and cost gradients as defined in (2.2). The key
innovation comes at the meta level, where online learning algorithms
adapt initialization parameters (ﬂ'm 0, nm) across tasks to minimize both
the task-averaged regret R, = ; SM (T (7)) = B[ (7im)]) and
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Figure 2.2: Meta-SRL framework. A meta-learner employs online learning
algorithms (e.g., OGD) to adapt base learner hyperparameters (initial policy 7,0 and
learning rates 7, ) across a sequence of CMDPs. For each CMDP task, the base learner
(implemented as CRPO) learns a control policy while balancing reward maximization
and constraint satisfaction. The meta-learner optimizes these hyperparameters based
on the base learner’s performance metrics, including convergence rates and constraint
violations, enabling efficient transfer across related constrained control tasks (Khattar
et al., 2023).

constraint violations R. = - M (&, — Jinc(7m)), where 7%, is the
optimal policy and 7, is the learned policy. This adaptation leverages
task similarity measured via KL divergence between optimal policies for
different grid states. The framework shows theoretical convergence rates
that is proportional to the similarity between grid operating conditions.

Beyond current safe RL methods which typically treat power sys-
tem control as a single CMDP, Meta-SRL offers a systematic way to
handle temporal evolution of grid conditions while maintaining safety
guarantees. This opens new possibilities for developing adaptive control
strategies that can efficiently transfer knowledge between different oper-
ating scenarios while ensuring reliable grid operation. Further research is
needed to validate these theoretical guarantees in realistic power system
environments and develop computationally efficient implementations
suitable for real-time grid control.
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Safe Model-Based RL

Models, much like maps, are inevitably partial representations that must
still guide effective decision-making. In safe model-based reinforcement
learning (MBRL), these representations must serve multiple purposes
while acknowledging their inherent limitations.

Safe model-based RL leverages a learned dynamics model, repre-
sented as § = f(s,a,w) (where w captures noise or unmodeled informa-
tion), to make informed decisions about safety and optimization. This
approach offers several unique advantages. First, it enhances sample
efficiency by allowing the agent to reason about consequences with-
out direct experience. Second, it provides interpretability through the
learned model, offering insights into system behavior. Third, it poten-
tially allows for transferability, as a learned model can often generalize
to new tasks.

The framework of safe MBRL revolves around four key components:

e Model Learning: This component focuses on learning the sys-
tem dynamics f from safely collected data. Common approaches
include Gaussian Processes, Neural Networks, and Ensemble
methods. Advanced learning approaches enhance this component
through joint Learning of models and certificates for end-to-end

33
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Safety Constraints
Eg. control barrier functions, Lyapunov
stability, reachable sets, STLs

Model Learning

Eg. Gaussian Processes, NNs, ensembles

learn f , handle uncertainty
(implicitly evaluate objective/safety)

max J (71' ) objective function formulate & enforce
T
st.me Hsafe safety constraints 4/

improve policy within 4mafety and information gain

safety limits (implicit in the optimizatjon process)
Policy Optimization Safe Exploration
Eg. constrained policy gradient, safe Q- Eg, cautious exploration, guided
learning, robust MPC exploration

Figure 3.1: Overview of safe MBRL. The core components (model learning, safety
constraints, safe exploration, and policy optimization) form a cyclic learning process
centered around a constrained optimization problem max, J(w) subject to 7 € Ilsate.
The framework is enhanced by learning approaches (joint learning, certificate learning,
and uncertainty quantification) that enable data-efficient safety verification, and
practical considerations (structure-constrained learning, computational efficiency, and
generalization) that facilitate real-world implementation. Arrows indicate information
flow and functional relationships between components, showing how safety constraints
and performance objectives are balanced throughout the learning process.

training.

e Safety Constraints: Here, the goal is to formulate and enforce safety
constraints (Chapter 1.4). Approaches include control-theoretic
tools such as Control Barrier Functions, Lyapunov Stability anal-
ysis, and Reachable Set computation.

o Safe Exploration: This involves collecting data while ensuring the
policy remains within a safe set. Strategies include Optimistic,
Cautious, and Guided Exploration.

e Policy Optimization: The objective is to improve the policy 7
while maintaining safety. Techniques include Constrained Policy
Gradient methods, Safe Q-learning, and Robust Model Predictive
Control.

These four components are deeply interconnected and enhanced by prac-
tical considerations for real-world implementation (Figure 3.1 provides
an overview). For instance, a more accurate model enables more precise
safety constraints and safer exploration, while structure-constrained
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learning incorporates domain knowledge, computational efficiency en-
ables scalability, and generalization approaches ensure robust perfor-
mance across different operating conditions.

The field of safe model-based RL faces several key challenges: 1)
Handling model uncertainty: As the learned model is an approximation,
managing and accounting for model errors is crucial for safety guarantees.
2) Balancing exploration and safety: There’s a fundamental tension
between the need to explore for better learning and the requirement
to maintain safety at all times. 3) Ensuring constraint satisfaction
under uncertainty: Safety constraints must be satisfied not just for
the nominal model, but for all plausible models within the uncertainty
set. 4) Scalability to complex systems: As system complexity increases,
computational demands for model learning, constraint evaluation, and
policy optimization can become prohibitive. 5) Providing formal safety
guarantees: Establishing rigorous safety proofs in the presence of learned
components and uncertainties remains a significant challenge.

Notion Primer This chapter uses both continuous-time dynamics
$ = f(s,a) with trajectories s(t), and discrete-time dynamics sy =
f(s¢,a;) with sequences {s;}{_,, where s € S represents system states
and a € A denotes control actions. For systems with uncertainty,
we write f(s,a,w) where w € W. Safety certificates use Lie deriva-
tives L¢h(s) = Vh(s)" f(s) in continuous time and forward differences
Ah(s) = h(f(s)) — h(s) in discrete time. Safety constraints are defined
through sets Sgafe = {s | h(s) > 0}, while stability is analyzed using
Lyapunov functions ®(s) and barrier functions B(s). Power system
variables include voltage v; at bus j with bounds [v;,v;], frequency
deviation A fi, and Area Control Error ACE}, in area k. Learning com-
ponents include parameterized policies my(s), neural certificates with
parameters 1, value functions V™ (s), and respective loss functions Leert
and Lpolicy for optimization.

3.1 Control-Theoretic Approaches

Control-theoretic approaches aim to combine the data-efficiency of
model-based methods with rigorous safety guarantees, enabling the
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application of RL in safety-critical domains.
Lyapunov functions are fundamental tools for proving stability of
nonlinear systems.

Definition 3.1 (Lyapunov Function). For a system $ = f(s), a continu-
ously differentiable function ® : R” — R is a Lyapunov function if: (i)
®(s) > 0 for all s # 0, ®(0) = 0 (ii) P(s) = L;®(s) = VO(s)" f(s) < 0
for all s # 0.

They provide a way to show that the system’s “energy”, in some gen-
eralized sense, is always decreasing. This stability definition is typically
seen in frequency control, where convergence to a synchronized state
where all frequencies match and phase angles settle to values satisfying
the power flow equations is desirable (Cui et al., 2023; Liu et al., 2024b).

For voltage control problems, we often need to prove convergence
to a safe operating band S, = {v € RV v, < v <05,j € N}
rather than to a specific equilibrium point. LaSalle’s invariance theorem
extends Lyapunov theory to handle such cases by showing convergence
to the largest invariant set where the Lyapunov function derivative is
zero. This provides a natural framework for analyzing set-based stability
without requiring the Lyapunov function to be zero only at a single
point. Feng et al. (2023) leverage this principle for discrete-time voltage
control dynamics. By designing the controller to be zero inside Sy, they
ensure this set is invariant, thus guaranteeing voltage stability through
LaSalle’s theorem while accommodating the practical requirement of
maintaining voltages within an acceptable range rather than at a fixed
point.

Control Lyapunov Functions (CLF extend the concept of Lyapunov
functions to controlled systems, providing a constructive way to design
stabilizing controllers.

Theorem 3.1 (Control Lyapunov Function). For a system $ = f(s,a),
if there exists a continuously differentiable function ® : R” — R such
that: (i) ®(s) > 0 for all s # 0, ®(0) = 0 (ii) inf,{V®(s)" f(s,a)} <0
for all s # 0 Then there exists a stabilizing control law.

Barrier functions provide a way to verify set invariance, another
type of safety constraint.
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Definition 3.2 (Barrier Function). For a safe set Sqfe = {s € R" :
h(s) > 0}, a continuously differentiable function B : R" — R is a
barrier function if: B(s) > —a(B(s)) for all s € Sgage where a is a class
K function.!

Control Barrier Functions (CBFs) extend barrier functions to con-
trolled systems, providing a way to design controllers that ensure safety.
Some specific types of CBFs can be obtained by choosing B(-) as the
safety constraint h(-) (zeroing CBF) or its reciprocal (reciprocal CBF)
to provide additional flexibility in shaping the barrier function behavior
near the boundary of the safe set. For instance, AdaSafe (Wan et al.,
2023) use both for the frequency control problem.

Theorem 3.2 (Control Barrier Function). For a system $ = f(s,a) and
safe set Sqage = {s € R™ : h(s) > 0}, if there exists a continuously
differentiable function B : R® — R such that: sup,{VB(s)" f(s,a) +
a(B(s))} > 0 for all s € Sgate Where « is a class K function, then there
exists a control policy that renders Sgate forward invariant.

Zhao et al. (2023) implement CBFs to ensure safe operation of syn-
chronous generators and inverter-based distributed generators. Specifi-
cally, they modify unsafe RL control actions through an optimization
problem ¢(u,) = max(0, VB(s)T £(s, al+u,)+a(B(s))+plur |3 Here,
a" is the RL action and p penalizes large modifications. The safety filter
updates the refined control u, = u, — V,, ¢(u,) until CBF conditions
are met, ensuring operational constraints during transients.

Robust Control Lyapunov Barrier Functions (rCLBFs) integrate
stability requirements, as expressed by CLFs, with safety constraints, as
captured by CBFs, while accounting for model uncertainties. Wang et al.
(2023a) use the rCLBF approach to encode both the requirement that
the system states converge to a stable equilibrium and the condition
that they remain within safe voltage and frequency bounds, even under
uncertain and time-varying renewable generation. The practical benefit

A class K function is a continuous, strictly increasing function « : [0, 00) — [0, c0)
with «(0) = 0. These functions are commonly used in control theory and stability
analysis to define comparison functions and characterize rates of convergence. A
simple example would be a(z) = = and a(z) = z* for z > 0.
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is that the resulting controller can handle a wide range of disturbances
while guaranteeing both safety and stability, thereby increasing the
reliability and flexibility of power system operations without sacrificing
performance.

Robust control methods provide systematic frameworks for handling
model uncertainties and disturbances in control system design (Zhou
and Doyle, 1998). These approaches explicitly account for the gap
between mathematical models and physical systems, ensuring stability
and performance despite uncertainties.

One powerful framework within robust control is Integral Quadratic
Constraints (IQCs), which provide a general approach to characterize
the input-output behavior of uncertain or nonlinear operators in closed-
loop systems (Megretski and Rantzer, 1997). IQCs unify various notions
of stability and performance by expressing conditions as quadratic
forms integrated over time. Before defining IQCs, we establish a few
notations. Let L5[0,00) denote the space of square-integrable signals
y : [0,00) — R™, with the Ly norm given by ||y||lz, = (fy~ Hy(t)”zdt)UZ.
A causal operator A : L]0, 00) — L5'[0,00) maps an input signal y(t)
to an output w(t) = A(y)(t). Below, we introduce the time-domain
definition of IQC (Seiler, 2014).

Definition 3.3 (Time-domain IQC). Let A : L3[0,00) — L5'[0,00) be
a bounded, causal operator. Consider a stable, linear operator ¥ :
LyT™[0,00) — L]0, 00) and a constant, symmetric matrix M € R7*,
Define the filtered signals z(t) = ¥ [Z((?)] , where w(t) = A(y)(t). We
say that A satisfies the IQC defined by (¥, M) if for all y € L5[0, c0),

/°° ()T M2(t) dt > 0.
0

Intuitively, this inequality restricts the way w = A(y) can deviate
from y by enforcing a quadratic energy-like bound. Various known
uncertainty classes (e.g., sector-bounded nonlinearities, slope-restricted
functions) can be encoded as IQCs with suitable choices of ¥ and
M. IQCs have been applied to analyze the stability of power system
controllers under large uncertainties. For example, Jin and Lavaei (2020)
use 1QCs, combined with Lyapunov and dissipativity-based methods, to
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certify stability of RL policies applied to nonlinear and uncertain power
network models. By treating the RL-based controller and nonlinear
power flow dynamics as interconnected blocks, IQC analysis provides a
systematic way to ensure that, despite model inaccuracies and changing
operating conditions, the closed-loop system will remain stable. This
complements the earlier introduced Lyapunov and barrier function
techniques by offering a scalable and flexible framework to handle
complex, data-driven policies in real-world power systems.

Several other mathematical frameworks complement these approaches
for analyzing stability, safety, and robustness. Contraction metrics
(Lohmiller and Slotine, 1998) provide a differential framework for ana-
lyzing trajectory convergence by studying how infinitesimal distances
between solutions evolve over time, offering tools for studying nonlinear
system stability and robustness. Reachability analysis provides formal
methods to compute sets of states that can be reached under bounded
disturbances, with Hamilton-Jacobi methods being particularly useful
for safety verification (c.f., (Bansal et al., 2017) for a recent overview).
Dissipativity theory (Willems, 1972) generalizes energy-based notions
such as passivity to characterize input-output properties of dynam-
ical systems, with recent applications to networked systems (Arcak
et al., 2018). Together, these tools offer different perspectives and tech-
niques for ensuring safe control of power systems (See Table 3.1 for an
overview).

3.2 Learning-based Certificates and Joint Policy Learning

To build upon the previously introduced concepts, we now present
a generic recipe for integrating certificates (e.g., Lyapunov functions,
CBFs) with the policy optimization process in safe MBRL (Fig. 3.2).
This recipe provides a systematic approach to ensure that safety con-
straints and performance objectives are jointly addressed, enabling a
principled pathway toward end-to-end learning of safe and effective
control policies.

The process begins with access to a dataset of system trajectories,
which may be obtained from historical records or simulation. A suitable
model of the system dynamics, assumed to be given or known, provides



40 Safe Model-Based RL

Table 3.1: Comparison of three RL approaches for power system control, analyzing
their problem formulation, theoretical stability guarantees, learning methodology,

and implementation considerations.

Problem Setting

Safety Guarantee

Learning Approach

Practical Aspects

(Jin and Lavaei, 2020) Frequency
regulation in power system; Mixed
linear-nonlinear dynamics; Uncer-
tainties from renewables, loads, pa-
rameter variations; Unknown nonlin-
ear components

1QC-based certificates;
Robust invariance sets
under bounded uncer-
tainties; Requires Hur-
witz nominal system

TRPO with stability
regularization; Neural
nets with bounded gra-
dients; Safe exploration
guided by IQC certifi-
cates

Requires solving SDPs
offline; Safe exploration
and training; Local
measurements; Handles
nonlinear uncertainties

(Gu et al., 2022) Frequency regula-
tion in multi-area system; Partial ob-
servability; Both linear and nonlinear
dynamics; Parameter uncertainties
considered

Exponential stability
via IQCs; Lyapunov
theory with S-lemma;
Sequential convexifica-
tion

Policy gradient with
stability ~ projection;
RNN architecture with
tanh activation; Con-
vex stability conditions

Requires solving SDPs;
Safety during explo-
ration and training;
Handles decentralized
control

(Cui et al., 2023) Primary frequency
control; Renewable integration; Non-
linear swing equations; System pa-

Local exponential sta-
bility; Assumes phase
angles in [0,7/2); Lya-

ReLU-based RNN with
saturation and mono-
tonicity  constraints;

Local measurements;
No runtime optimiza-
tion; Compatible with

rameter/initial condition variations  punov construction Stability by design standard inverter
interfaces

(Feng et al., 2023) Voltage control in  LaSalle’s  invariance; Modified DDPG; <lms  computation;

distribution systems; Local measure- Assumes network Monotone neural nets; Scales to  123-bus;

ments only; Discrete-time dynamics; reactance matrix is ReLU architecture; Local measurements;

Exact network parameters unknown positive definite Zero control in safe Real-time capable

voltage band

(Liu et al., 2024b) Load frequency
control in multi-area system; Main-
tains stability under adversarial at-
tacks on communication network

Lyapunov stability;
Empirical robustness
against FGSM attacks;
Monotonic policy

DDPG + adversarial
training; Split posi-
tive/negative ~ ReLU
nets; Monotonicity
constraints

Faster convergence
(than standard DDPG);
Requires communica-
tion; Handles attack
scenarios

(Zhao et al., 2023) Transient stabil-
ity and voltage control; Nonlinear
networked power systems; Both syn-
chronous and inverter-based genera-
tors; No explicit uncertainty model-
ing

Forward invariance
via control barrier
functions; Requires
accurate state measure-
ments; Deterministic
guarantees

DDPG with neural bar-
rier certification; Two-
layer structure (RL +
safety filter); Online
barrier adaptation

Reasonable computa-
tion for iteratively up-
dates control actions;
Requires full state feed-
back; Real-time opti-
mization needed

(Wang et al., 2023a) Voltage and fre-
quency control for networked micro-
grids; Nonlinear ODE system model;
Renewable uncertainties and distur-
bances; State includes voltage, fre-
quency, power

rCLBF; Assumes lo-
cally Lipschitz system
dynamics and the un-
certainty set is convex
and bounded

Physics-informed
supervised  learning;
Co-learning of safety
certificates and control
policy

Local measurements;
Real-time capable; Re-
quires state feedback;
Validated on load
changes and faults

(Wan et al., 2023) Load frequency
control with high renewable penetra-
tion; Parameter uncertainties in iner-
tia, generation loss, and droop gain;
Non-stationary operating conditions

Forward invariance via
CBF (zeroing and re-
ciprocal variants); Self-
tuning safety param-
eters; Requires feasi-
ble compensation ac-
tion existence

Meta-learning en-
hanced TD3; Transi-
tion  post-processing
and noise elimination;
DRL base + CBF
safety layer; GP or
uncertainty handling

Real-time QP solving
for CBF; GP prediction
overhead; Requires par-
tial model knowledge

(Shuai et al., 2024) Grid-forming in-
verter frequency regulation; Nonlin-
ear system dynamics representing
Virtual Synchronous Generator; Pa-
rameter uncertainties in virtual in-
ertia and damping; Battery storage
constraints

Probabilistic Lyapunov
stability; Region of
Attraction guarantees;
GP-based uncertainty
quantification; Safe
exploration bounds

Model-based RL with
Approximate Dynamic
Programming; GP
dynamics learning;
Lyapunov-guided safe
exploration within
computed ROA

Local measurements
only; Robust to pa-
rameter variations and
external disturbances;
Compatible with exist-
ing inverter systems
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Figure 3.2: Overview of the learning-based certificate and joint policy optimization
framework. The framework integrates power system domain knowledge/measurements
(state samples including voltage, frequency, and DER conditions; system models
like swing equations and network topology) with a joint training process. The
training minimizes a combined loss function £(6, ) that simultaneously learns both
a certificate function @« (s) (e.g., Lyapunov or barrier functions) and a control
policy g« (s). The verification stage provides feedback to refine both components,
ensuring the learned policy maintains safety constraints while achieving desired
performance objectives. This systematic approach enables end-to-end learning of safe
and effective control strategies for power system applications.

a basis for characterizing state evolution and enforcing safety conditions.
While the generic recipe only requires that the model captures key
system characteristics, this model can be enriched by incorporating data-
driven refinements, uncertainty quantification, or hybrid representations.
At the core of this stage lies the construction and minimization of a
loss function, which is crucial for learning the certificate function.
The key insight in designing the loss function is the conversion
of certificate conditions into loss terms. For instance, an inequality
condition a < b is transformed into a loss term max(0,a — b)?, while
an equality condition a = b becomes (a — b)?. Taking the Lyapunov
function as an example, its conditions ®(s,) =0, ®(s) > 0 for s # s,
and A®(s) < 0 are translated into loss terms ®(s,)?, max(0, —®(s))?,
and max (0, A®(s))?, respectively. The overall loss function can be
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expressed as:
Loert () = @y (s9)* +e1 ) max(0, —By(s7))" +ez Y max(0, Ady(s;))*

where 1 represents the parameters of the neural network encoding the
certificate function.

The learning process requires careful consideration of sample cov-
erage, focusing on critical regions such as the boundaries of the safe
set for a CBF. Balancing the weights {e1,e2} of different certificate
conditions in the loss function is crucial. Practical enhancements include
adaptive sampling, adding robustness margins in certificate conditions,
and implementing online policy refinement.

Extending this approach to joint learning of certificates and control
policies involves integrating the policy network into the training stage.
The loss function is modified to include both certificate and policy
components:

5(1/1, 0) = ﬁcert (7/}7 9) + e3£policy(9)

Here, 1) and 0 are the parameters of the certificate and policy networks,
respectively. Loy enforces certificate conditions using actions generated
by the policy my(s), while Lyolicy represents the negative expected
discounted return: —E[>", vr(s¢, mo(st))]-

This joint optimization allows the certificate and policy to co-evolve,
potentially leading to safer and more efficient control strategies. The
balance between certificate satisfaction and policy performance can be
adjusted through the hyperparameter es.

Extensions and Adaptations in Power System Control

The basic approach assumes known dynamics f(s,a), which is often
unrealistic. This limitation is evident in the certificate conditions, e.g.,
By (s) = Vy(s) - f(s,mp(s)). In practice, f(s,a) is often uncertain or
unknown, necessitating approaches that can handle model uncertainty
or learn from data directly. This leads to methods that either estimate
f(s,a) from data, use robust formulations to account for uncertainty,
or learn certificates directly from trajectory data without explicitly
modeling the dynamics (Chang et al., 2019).
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Recent work has demonstrated how this generic recipe outlined in
Fig. 3.2 can be specialized to address the unique challenges encountered
in power systems. These studies illustrate how to incorporate physics-
informed modeling, leverage known structures such as droop control
laws, handle renewable energy uncertainties, and maintain safety and
stability under complex operating conditions.

For instance, Zhao et al. (2023) focus on transient stability control
in systems with synchronous generators and inverter-based distributed
generators, ensuring that operational limits on voltage and frequency
are strictly maintained. Their approach follows a modified version of the
recipe by incorporating an adaptive refinement mechanism for online
barrier certificate updates, along with a policy learned via DDPG.
Similarly, Wang et al. (2023a) target hierarchical control of networked
microgrids, blending control Lyapunov and Control Barrier Functions to
create a robust and physics-informed loss function that jointly addresses
stability and safety. This adaptation leverages well-understood power
system dynamics, droop control characteristics, and specific microgrid
constraints, showing how the recipe’s steps can be enriched by domain
knowledge. Moreover, Wang et al. (2023a) implement periodic data
regeneration and careful sample selection to enhance exploration while
respecting operational limits.

Active data collection and hybrid modeling approaches also emerge
as key strategies for achieving domain-specific objectives. Shuai et al.
(2024) consider grid-forming inverter frequency regulation, combining
first-principles virtual synchronous generator (VSG) modeling with
data-driven Gaussian Process (GP) corrections. They integrate safe
exploration into the learning process by focusing on a Region of At-
traction (ROA) that guides both data selection and policy refinement.
The result is a robust control scheme tailored to realistic parameter
uncertainties and storage system constraints, showing how the generic
recipe’s data collection and model selection steps can be adapted for
more complex and uncertain conditions. Similarly, Wan et al. (2023)
emphasize the interplay between known power system models (e.g., sim-
plified swing equations), GP-based parameter adaptation, and Control
Barrier Functions (CBFs) that provide real-time safety layers. Their
continuous data acquisition strategy and transition post-processing tech-
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niques demonstrate how the recipe’s validation and refinement stages
can be made domain-aware to handle evolving operational scenarios
and variable renewable penetration. Another approach is to combine
model-based reinforcement learning with Lyapunov stability theory to
handle unknown dynamics in power systems using Gaussian Process

(GP) (Shuai et al., 2024).

3.3 Practical Considerations

Structure-Constrained Learning Structure-constrained learning inte-
grates domain knowledge and constraints into machine learning models.
Early demonstrations (Cui et al., 2023) introduce neural architectures
enforcing monotonicity via Lyapunov-like constraints. Subsequent work
(Feng et al., 2023) adapts these principles to voltage regulation by
incorporating voltage-specific constraints such as deadbands, and Liu
et al. (2024b) combine monotonicity with adversarial training to ensure
robustness against malicious inputs. Beyond monotonicity, more general
structure-constrained approaches address complex dynamics and uncer-
tainty. For example, Jin and Lavaei (2020) propose gradient-bounded
neural networks to ensure well-bounded behavior and incorporate input
sparsity aligned with communication topologies under an IQC-based
analysis. Similarly, Gu et al. (2022) ensure stability for partially observed
systems by projecting RNN weights into convex sets derived from IQCs
and loop transformations. Such constraints reduce the search space,
accelerate stable learning, and improve generalization by embedding
inductive biases.

Computational Efficiency Computational requirements vary widely
with problem scale, device capabilities, and temporal response needs.
Some works, such as (Cui et al., 2023), capitalize on structured train-
ing methods to achieve several-fold reductions in training times over
standard policy gradient baselines. Others, such as (Feng et al., 2023),
operate in the millisecond regime for voltage control and rely on rela-
tively simple, localized computations that scale linearly with network
size; training may take on the order of minutes for medium-sized systems
and longer for large networks, yet still remains manageable. Methods
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that require solving SDPs for stability certification and weight projec-
tions (Jin and Lavaei, 2020; Gu et al., 2022) add overhead offline or
online in exchange for safety during exploration, but retain tractable
online inference. Approaches such as (Wan et al., 2023) focus on faster
convergence via meta-learning techniques, ensuring that training up-
dates can be computed efficiently offline and then rapidly adapted
online.

Scalability Studies demonstrate scalability from small frequency reg-
ulation scenarios to medium and large distribution networks. Decen-
tralized policies and local measurements (Feng et al., 2023; Gu et al.,
2022) show near-linear scalability. Other work (Wang et al., 2023a) em-
ploy locally controlled DERs with centralized training and distributed
execution. Common themes include modularity, local decisions, and
distributed architectures to avoid exponential computational growth.

Generalization Robustness to variable load profiles, renewable fluctu-
ations, and contingencies is critical. Meta-learning and GP regression
(Wan et al., 2023) improve adaptation under diverse conditions. Simi-
larly, (Feng et al., 2023) validate stable performance across scenarios
not explicitly trained upon. Zhao et al. (2023) provide a generalization
bound that with high probability, the learned barrier certificate will
generalize to unseen data, under the assumptions of stationary environ-
men and independent and identically distributed (IID) samples. The
trend favors training procedures that systematically promote flexible
adaptation to a diverse range of plausible grid states.

Robustness Ensuring reliability under adversarial disturbances and
uncertainty extends beyond generalization. Robust control techniques
such as (Jin and Lavaei, 2020) and (Gu et al., 2022) handle parameter
variations, model uncertainty and partial observability. Methods like
(Wang et al., 2023a) use robust control Lyapunov barrier functions
to handle parameter variations and external disturbances, while (Liu
et al., 2024b) address adversarial attacks directly by incorporating ad-
versarial training into the monotone neural architectures. Collectively,
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these strategies maintain safe, stable operation despite parameter drifts,
volatile renewables, and malicious perturbations. These robustness prop-
erties are essential for practical deployment of safe MBRL methods in
real-world power systems, where resilience against unexpected conditions
is paramount for reliable operation.
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Safe Multi-Agent RL

Recent advances in Multi-Agent Reinforcement Learning (MARL) offer
a promising framework for tackling the complexity, scalability, and
reliability challenges in modern power systems. Such systems comprise
numerous interacting components—distributed energy resources, flexi-
ble loads, and control devices—operating under partial observability,
non-stationarity, and stringent constraints. MARL naturally fits these
environments, coordinating decentralized agents to achieve global effi-
ciency and robustness.

The subsequent sections will delve into key concepts and frameworks
in MARL (Sec. 4.1), examine the unique challenges in power systems
(Sec. 4.1.2), and discuss techniques and approaches that can enhance
coordination, scalability, and, most importantly, safety (Sec. 4.3).

Notation Primer Building on previous chapters, we extend to the
multi-agent setting for the set of agents K = {1,..., K}. The joint
state and action spaces decompose as S = xlesk and A = XszlAk
respectively. For partial observability, each agent k has local observation
space Oy with observation function O. Agent-specific rewards r; and
value functions Vi (7, m_x) capture individual objectives, where 7y, is

47
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agent k’s policy and m_j, denotes others’ joint policy. Safety is enforced
through the safe policy set Hgge = {7 : J.(7) < £}, barrier functions
B(s), and safety sets Safe = {s | h(s) > 0}. For power networks, £
represents edges with communication weights w(k, k'), while v, p*“t, and
Pt denote voltage magnitude, active and reactive power. Indices k,
j, t, and ¢ consistently refer to agents, buses, timesteps, and iterations

respectively.

4.1 Perspectives from MARL

4.1.1 MARL Fundamentals

MARL is a framework that extends the single-agent RL paradigm to
environments with multiple agents. In MARL, agents interact with the
environment and each other, aiming to learn optimal policies that max-
imize their individual or collective rewards. The Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) is a formal model
for MARL problems (Oliehoek, Amato, et al., 2016). A Dec-POMDP
extends MDP to multi-agent settings with partial observability. Key
additions include joint action space A = XA, agent-specific rewards
{r¥}rex, individual observation spaces {O}, }rex, and observation prob-
ability function O.

In a fully cooperative Dec-POMDP, agents share a reward function
and seek a joint policy m = {m;}rex that maximizes the expected
discounted cumulative reward (Eq. 1.1). In contrast, competitive or
mixed Dec-POMDPs involve agents with individual reward functions r*
aiming to maximize their own expected discounted return Vi (7, 7_x) =
ETN]P(,| () [Zt 'ytrf} while considering others’ policies m_j, where
weuse T ~ P < \ {ﬂk}szl) to denote the distribution of trajectory 7 under
the joint policy {m;}X . The joint policy 7* = {7} }X | represents a
Nash equilibrium when 7} € arg maxy, Vi (mg, 7*,).

There are three training regimes in MARL, differed by the flow of
information and control among agents.

Centralized Training with Decentralized Execution (CTDE)
In CTDE, the training process is centralized, allowing agents to
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Figure 4.1: Comparison of MARL training paradigms. The figure distinguishes
the physical layer (power grid) from the information/learning layer (agents and their
communication patterns). The bottom table summarizes key trade-offs: CTDE (left)
relies heavily on global information with high learning efficiency but limited scalability;
networked (middle) balances these factors at a medium level; and decentralized (right)
uses minimal communication, enabling high scalability, but may slow down learning.

comm. require.

scalability

access the global state (e.g., full network states, renewable condi-
tions) and other agents’ actions and observations. However, during
execution, the agents only have access to their local observations
and actions. CTDE enables the learning of coordinated policies
while ensuring decentralized execution. This regime has been ap-
plied in distribution network voltage regulation (Chen et al., 2021;
Shi et al., 2023; Mu et al., 2023), coordinating multiple microgrids
for resilience (Qiu et al., 2023), as well as in DSO-VPP operations
(Sun and Lu, 2024) and anomalous measurement conditions (Li
et al., 2024). This regime aligns well with power systems, where a
central entity (e.g., a system operator) can gather comprehensive
data offline/online for training, and the distributed agents require
only local signals during actual network operation.

Networked MARL In networked MARL, agents are connected via
a communication network and can exchange information during
training and execution. The communication topology can be fixed
or dynamic, and agents must learn to communicate effectively to
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achieve optimal performance. For example, Zhang et al. (2024a)
consider a fixed communication topology for demand management
in distribution networks, where agents learn policies based on local
observations while sharing their value function parameters 6, with
their neighbors for consensus update is: 0;;“ =D e N (k) 9};, where
N (k) is the set of neighbors of agent k in the communication
graph, and ¢ represent the iteration index. This regime has also
been used to achieve efficient multi-microgrid power exchanges
(Zhang et al., 2020b), volt-VAR control via distributed devices
(Gao et al., 2021), and stable DC microgrid operations (Fan et al.,
2023b). Networked MARL suits power systems where peer-to-
peer communication among physically adjacent components (e.g.,
neighboring microgrids, close-by voltage regulators) can enhance
coordination, reduce complexity, and scale to larger networks.

Decentralized MARL In decentralized MARL, agents (e.g., devices

or aggregators) learn independently based on their local obser-
vations and rewards. This regime is more scalable and robust to
changes in the environment or the number of agents. However,
it can suffer from non-stationarity and suboptimal coordination
due to the lack of global information. While few works adopt pure
decentralized MARL (with no communication or central training),
some resemble a more decentralized approach by limiting global
information and relying heavily on local measurements and local
interactions (Zhang et al., 2020b; Fan et al., 2023b).

Figure 4.1 illustrates these three training paradigms and their key

trade-offs in terms of learning speed, communication requirements,

and scalability. In addition to how information and responsibilities are

distributed among agents, another important dimension is whether

learning proceeds on-policy or off-policy, which affects sample efficiency,

stability, and adaptability under changing power system conditions.

Off-Policy Methods Off-policy method has been widely used, often

in the settings of CTDE (e.g., MADDPG or TD3) (Shi et al., 2023;
Qiu et al., 2023; Mu et al., 2023; Sun and Lu, 2024; Li et al., 2024)
or networked MARL (Zhang et al., 2020b; Gao et al., 2021; Fan
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Figure 4.2: MARL Maze. Illustration of key MARL challenges, emphasizing the
complexity and interconnectedness of these issues.

et al., 2023b). By using experience replay buffers, these methods
can learn from past trajectories and revisit diverse operational
scenarios (e.g., varying load patterns, renewable uncertainties, and
evolving market prices), improving sample efficiency.

On-Policy Methods On-policy learning (e.g., policy gradient based
variants), while less common, can align closely with real-time
operational constraints, as policies are updated directly from the
trajectories they generate. This may offer stable adaptation to
current conditions but can be less sample-efficient. Some examples
include (Chen et al., 2021; Zhang et al., 2024a), where agents
learn continuously from their current policy’s behavior.

The choice of training regime often reflects the complexity and scale of
the power system application, the availability of global versus local in-
formation, and the balance sought between achieving high performance,
ensuring operational safety, and maintaining scalability.

4.1.2 Key Challenges in Power Systems

MARL faces three primary categories of challenges (illustrated in Figure
4.2):
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Perception Challenges Perception challenges encompass partial ob-
servability and non-stationarity. In partially observable environ-
ments, agents receive observations ox ~ O(s,ai) (e.g., its own
demand, local generation, and carbon emissions) instead of the
full state s (e.g., other agents’ actions, network congestion, or
global power flow), leading to hidden state information. This is
often modeled as a Dec-POMDP, where agents must make de-
cisions based on local observations. Non-stationarity is inherent
due to continuously changing loads, intermittent renewable gener-
ation, and time-varying market signals. It can also arise as other
agents’ policies evolve during learning, violating the Markov as-
sumption and making the transition function time-dependent (i.e.,
P(s'|s,a,t) depends on t). These conditions make stable policy
learning more difficult, as agents must adapt to evolving environ-
ments and manage uncertainty in both observation and system
dynamics.

Learning Challenges Learning challenges include credit assignment
and the exploration-exploitation dilemma. Attributing system-
level improvements (e.g., stable voltages, reduced losses, or lower
carbon emissions) to individual agent actions is complex in in-
terconnected power networks. This credit assignment problem
stems from the intertwined effects of multiple devices and control
strategies. Moreover, exploration in a critical infrastructure poses
a significant risk: naive experiments might lead to voltage/fre-
quency excursions and compromise safety or compliance with grid
codes. Balancing the need for exploration with the imperative for
stable operations (exploitation) presents a delicate challenge.

Scalability and Coordination Challenges Scalability and coordi-
nation challenges intensify as the number of agents increases. The
joint action space grows exponentially: |A| = |A1|x|Ag|X...x|AK],
making centralized approaches intractable for large systems. Large-
scale networks must integrate strategies that allow local decision-
making to aggregate into stable system-wide outcomes. Achieving
such coordinated control across a large number of agents, each
with limited observability and potentially conflicting objectives,
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is a key hurdle—one that highlights the importance of scalable
and communication-aware MARL frameworks in the evolving
landscape of modern power grids.

These challenges are connected, with methods often addressing
multiple issues simultaneously.

4.2 Techniques for Addressing MARL Challenges

4.2.1 Tackling Perception Challenges

To overcome partial observability, several approaches emerge.

Recurrent networks, such as Gated Recurrent Units (GRUs) (e.g.,
(Mu et al., 2023; Chen et al., 2022; Shi et al., 2023)) and Long Short-
Term Memory (LSTM) (e.g., (Chen et al., 2021)), maintain an internal
state to integrate temporal modeling and can effectively encode history
to extract relevant features.

Information sharing among neighbors, such as the use of networked
MARL and consensus approaches, can help broaden agent’s view beyond
purely local measurements (Zhang et al., 2020b; Gao et al., 2021; Fan
et al., 2023b; Zhang et al., 2024a). Graph-based models such as GCN
can also incorporate topological information when integrating neighbor
data (Mu et al., 2023). Communication methods such as CommNet
(Sukhbaatar, Fergus, et al., 2016) aim to learn a communication protocol
to enable information sharing, which has been adapted by (Chen et al.,
2021) to foster the collaborations among neighboring agents. Learning
a surrogate model using Sparse Variational Gaussian Processes (SVGP)
to create a simulation environment for MARL (Li et al., 2023) can
reduce real-world communication and data collection.

To handle nonstationarity, Hernandez-Leal et al. (2017) discuss five
categories of approaches, among which ignoring (assuming stationarity)
and forgetting (updating based on recent observations), and a few works
on responding/learning opponent models are most common in power
systems.

Attention mechanisms, exemplified by Multi-Actor-Attention-Critic
(MAAC) (Igbal and Sha, 2019), focus on relevant parts of observations
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Table 4.1: Comparison of Multi-Agent Control Approaches in Power Systems

Problem Setup

MARL Algorithm

Enhancements

Comments

(Chen et al., 2021): Microgrid sec-
ondary voltage regulation; Coop-
erative agents with local measure-
ments; Voltage bounds

On-policy actor-
critic; CTDE; Action
smoothing; Experi-

ence replay

Spatial discount fac-
tor for scalability;
Differentiable comm.;
LSTM for partial ob-

servability

Tested under load
variations; 35.8ms in-
ference time for 40
agents

(Shi et al., 2023): Distribution MADDPG-based; Parameter sharing Tested across sea-
networks (33-322 bus); Voltage Safety layer with for scalability; GRU sonal variations;
control via PV inverters; Cooper- action correction; for partial observabil- Quick safety compu-
ative agents with partial observ- Off-policy =~ CTDE; ity; Centralized critic tations

ability; Voltage constraints Experience replay

(Zhang et al., 2024a): Low-carbon ~ Actor-critic; Trust Consensus-based Privacy preservation;
demand management; Carbon region updates for coordination; Fixed Handles renewable
emission constraints; Bi-level con- constraints; On- communication uncertainty; Carbon
trol (aggregate load agents, distri- policy training topology; Network- reduction metrics
bution network operator) based value updates

(Zhang et al., 2020b): Power man- Gaussian policy Distributed Privacy preservation
agement optimization; Coopera- functions; Gradient- consensus-based between MGs; Real-
tive agents with local observa- based safe policy training; Backtrack- time decision making
tions; Voltage, current, and op- learning; Off-policy ing for constraint (1.4svs 145.5s central
erational constraints distributed training  satisfaction opt.)

(Gao et al., 2021): Volt-VAR con-
trol via voltage regulators, capac-
itors, and tap changers; Cooper-
ative agents with local observa-
tions; Operational constraints

Maximum entropy
RL; Off-policy train-
ing with randomized
protocol;
Experience replay

consensus

Comm.-efficient con-
sensus strategy; Lo-
cal reward decom-
position with value
function consensus

Robust against agen-
t/communication fail-
ures

(Qiu et al, 2023): Resilience- Shapley Q-value + Shapley value for Real-time deploy-
oriented coordination of net- DDPG; Off-policy credit assignment; ment (=0.6s);
worked microgrids; Cooperative CTDE; Gaussian  Centralized  critic; Resilience index
agents with Dec-POMDP; Volt- noise  exploration; Power exchange metric; Handles
age and power flow constraints Experience replay coordination uncertainties

(Fan et al., 2023b): DC microgrid TD3-based dis- Neighbor-based com- Handles  topology
OPF with multiple DGs; Cooper- tributed architecture; munication topology; changes and dynamic
ative agents with neighbor-based Off-policy training Safe exploration loads

partial observability; Power and with experience through PI controller

voltage operational bounds

buffer initialization

initialization

(Mu et al., 2023): Distribution
network voltage control via PV in-
verters; Cooperative agents with
Dec-POMDP; Voltage constraints

MADDPG-based;
Barrier function for
safety; Off-policy
CTDE with parame-
ter sharing

GCN for topology
embedding; GRU for
temporal dependen-
cies

Tested across topolo-
gies; Metrics include
controllable ratio and
power loss

(Sun and Lu, 2024): Dual-layer
Stackelberg game between DSO
and VPPs; Mixed cooperative-
competitive agents with privacy
requirements; AC power flow and

Parameter-sharing
TD3; Off-policy
CTDE; Prioritized
experience replay

Privacy-preserving

multi-agent joint
Q-value function;
Improved conver-

gence through shared

Demonstrated real-
time capability; Pri-
vacy preservation in
market operations

voltage constraints experiences
(Li et al., 2024): Voltage con- MAAC-based; Confederate image Robust to measure-
trol and economic dispatch under Off-policy CTDE technology;  Multi- ment anomalies; Met-

anomalous measurements; Coop-
erative agents with local observa-
tions; Operational constraints

framework; Experi-
ence replay

head graph attention
for topology; GRU
for trajectory history

rics include economic
cost, voltage devia-
tion
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or other agents’ information, aiding in addressing the perception chal-
lenges. Belief state methods explicitly handle uncertainty by maintaining
probability distributions over possible states.

Opponent modeling, as seen in DRON (Deep Reinforcement Op-
ponent Network) (He et al., 2016) and MADDPG (Lowe et al., 2017),
addresses non-stationarity by predicting other agents’ behaviors. Li
et al. (2024) develop a technique namedconfederate image technology
to maintain a model of other agents.

CTDE allows agents to share information during training but act
based on local observations during execution. MADDPG (Multi-Agent
Deep Deterministic Policy Gradient) (Lowe et al., 2017), a popular
CTDE method, uses a centralized critic conditioned on all agents’ ob-
servations and actions, while the actor only accesses local information.
Although primarily applied to cooperative settings (e.g., (Mu et al.,
2023)), MADDPG can also handle mixed cooperative-competitive envi-
ronments. Off-policy learning enhances stability by learning from past
experiences. Examples include MASAC (Multi-Agent Soft Actor-Critic)
(Chen et al., 2024), off-policy maximum entropy RL (Gao et al., 2021),
and Twin TD3 (Delayed Deep Deterministic Policy Gradient) (Fan
et al., 2023b; Sun and Lu, 2024).

These methods often work synergistically, providing benefits across
multiple MARL challenges.

4.2.2 Credit Assignment and Exploration-Exploitation

For credit assignment, MARL employs several key approaches. Difference
Rewards evaluate an agent’s contribution by comparing the global
reward with and without the agent’s action. Counterfactual Multi-
Agent Policy Gradients, exemplified by COMA, use a centralized critic
to compute a counterfactual baseline for each agent. Shapley Value
Methods, such as SQDDPG (Wang et al., 2020), incorporate game-
theoretic concepts to fairly attribute contributions to each agent. Qiu
et al. (2023) employ Shapley Q-values to more explicitly measure each
agent’s marginal contribution, directly addressing credit assignment for
power system resilience and microgrid coordination.

To address exploration-exploitation dilemma, maximum entropy
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frameworks, as seen in (Gao et al., 2021; Li et al., 2023), can balance
exploration with exploitation by adjusting the weight for the entropy
term. Gaussian noise perturbations to the actor’s output, along with
large replay buffers, have been used (Qiu et al., 2023; Fan et al., 2023b).
Off-policy learning with replay buffer such as those used in MATD3
(Ackermann et al., 2019) algorithm can also help (Chen et al., 2022).

4.2.3 Scalability and Coordination

To enhance scalability, parameter sharing is a common approach, where
agents share network parameters for value function or policy estimation
(Mu et al., 2023; Sun and Lu, 2024). This allows leveraging data from
all agents to update a single shared network, improving scalability
and reducing policy oscillations. Combining parameter sharing with
Graph Convolutional Networks (GCNs) can further incorporate topology
information (Mu et al., 2023). Spatial discount factors (Chen et al., 2021)
encourage agents to consider the impact of their actions on neighboring
agents, limiting the state/action space span.

To tackle the coordination challenge, (Zhang et al., 2020b; Gao et al.,
2021; Zhang et al., 2024a; Mu et al., 2023) rely on decomposing the
global control task into local decisions informed by neighbor-to-neighbor
communication or CTDE. By operating on a graph structure where
agents represent network nodes, these works ensure that complexity
grows linearly or sub-linearly with system size. (Chen et al., 2021; Mu
et al., 2023) implement neighbor-to-neighbor communication, where
agents exchange partial information to coordinate voltage references.

Incentive mechanisms can be designed to encourage collaboration.
A cooperative bi-level framework, introducing an asymmetric Markov
game to align agent objectives and guide equilibrium behaviors, along
with a bi-level actor-critic algorithm for real-time control, is proposed
in (Hong et al., 2024). Similarly, Sun and Lu (2024) adopt a bi-level
approach to balance operational safety and market participants’ inter-
ests. While existing approaches use penalty functions and global reward
signals to promote cooperation and align objectives, Lin et al. (2024)
introduce Markov Signaling Game, a framework for studying strategic
incentive-compatible communication between a sender and a receiver.
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The signaling gradient and extended obedience constraints help learn
efficient and stable policies under information asymmetry.

4.2.4 Communication Efficiency and Robustness

Communication allows agents to share information and coordinate ac-
tions, but it must be done efficiently. While decentralized training such
as (Omidshafiei et al., 2017) is available, selective communication is
common, where agents only communicate a subset of relevant infor-
mation, such as value/policy data (Gao et al., 2021) or encoded state
information (Chen et al., 2021). In structured communication, such
as networked MARL (e.g., (Gao et al., 2021; Fan et al., 2023b)), each
agent only needs to communicate with its neighbors. Agents can also
learn communication protocols end-to-end, such as using differentiable
communication (Chen et al., 2021).

To handle agent and communication failures, Gao et al. (2021)
propose constructing replacement states using historical averages and
the agent’s own policy networks to maintain operations. The impact of
communication topology changes on learning performance is studied in
(Fan et al., 2023Db).

4.2.5 Discussion of MARL Methods

Key insights from MARL research highlight that many methods address
multiple challenges simultaneously, and the choice of method often
depends on specific problem characteristics. CTDE, as seen in MADDPG
and COMA (Foerster et al., 2018), addresses non-stationarity, credit
assignment, and scalable coordination by leveraging global information
during training while allowing for decentralized execution.

Attention Mechanisms, exemplified by MAAC and ATOC (Jiang
and Lu, 2018), help with partial observability, credit assignment, and
scalability by selectively focusing on relevant information. Value Decom-
position methods like VDN (Sunehag et al., 2018) and QMIX (Rashid
et al., 2020) focus on credit assignment and scalability by decomposing
team value functions into individual components. Communication-Based
Methods, such as DIAL (Foerster et al., 2016), aid in overcoming partial
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observability, coordinating exploration, and enabling scalable informa-
tion sharing through learned communication protocols.

Combining multiple approaches frequently yields the best results,
as different methods can complement each other’s strengths. However,
trade-offs exist between scalability, adaptability, and computational
complexity, requiring careful consideration in method selection. Real-
world applications often necessitate considering safety, adding another
layer of complexity to method choice, which we will address next.

4.3 Safety Considerations in MARL

Safe Multi-Agent Reinforcement Learning (MARL) enhances traditional
MARL by incorporating safety constraints through cost functions ¢
and their associated thresholds £. These safety constraints can be
implemented from either global or local perspectives, each serving
distinct safety requirements in multi-agent systems.

From a global perspective, safety constraints can be imposed on
the global state s = (si,...,sx) or joint action a = (ai,...,ax) of
the multi-agent system. This ensures system-wide safety properties are
maintained. For example, Zhang et al. (2024a) demonstrate this through
system-wide carbon emission constraints on the global state.

Local safety focuses on constraints specific to each agent’s local state
s and action ai. In power systems, local state constraints frequently
appear as frequency deviation limits in microgrids (Xia et al., 2022; Liu
et al., 2024b), voltage bounds (Shi et al., 2023; Zhang et al., 2024a), and
operational constraints for energy storage systems and distributed gen-
erators (Xia et al., 2022; Shi et al., 2023). Edge-based safety constraints,
such as branch flow limits, are not strictly local but govern interactions
between neighboring agents’ states and actions (Zhang et al., 2020b).

Table 4.2 provides a survey of safety constraints, as well as safe
MARL methods to be discussed next.



4.3. Safety Considerations in MARL

59

Table 4.2: Comparison of Safety Approaches in MARL for Power Systems

Safety Constraints

Safe MARL Method

Implementation Details

(Zhang et al, 2020b): Volt-
age limits, branch current flows,
DG/ESS operational bounds. Lo-
cal constraints.

Distributed consensus-based op-
timization with gradient-based
safe learning. Backtracking mech-
anism for constraint satisfaction.

Real-time decision making (1.4s)
on 33-bus distribution network.
Requires neighbor communica-
tion for constraint coordination.

(Gao 2021): Voltage
bounds, device switching limits,
neighbor power loss constraints.
Local operational constraints.

et al.,

Maximum entropy reinforcement
learning with consensus-based co-
ordination. Penalty-based reward
structure for safety enforcement.

Robust against agent fail-
ures while maintaining safety.
Communication-efficient consen-
sus.

(Xia et al., 2022):
bounds, local ESS operational
bounds (SOC, SOH, power lim-
its).

Frequency

Dual-network safety scheme (eval-
uation + guidance networks). Pre-
dictive violation detection with
safe action generation.

Decentralized execution (0.01s
computation time). Handles re-
newable uncertainty while main-
taining frequency stability.

(Fan et al., 2023b): Power and
voltage operational bounds in
DC microgrids. Neighbor-based
safety coordination for multiple
distributed generators.

Safe exploration through PI con-
troller initialization. Distributed
architecture with neighbor com-
munication for safety coordina-
tion.

Effectively handles dynamic loads
and topology changes while main-
Re-
quires initial safe exploration data

taining safety constraints.

from PI controllers.

(Shi et al., 2023): Local voltage
constraints with PV inverter re-
active power limits. Coordinated
voltage control across network.

Safety layer with quadratic pro-
gramming for action corrections.
Centralized safety coordination
with first-order approximation.

Scalability from 33-bus to 322-bus
systems. Quick safety computa-
tions. Tested across seasonal vari-
ations.

(Zhang et al., 2024a): Global car-
bon emission limit combined with
local voltage constraints. Bi-level
control structure.

Trust region policy optimiza-
tion with constrained updates.
Consensus-based coordination for
safety enforcement.

IEEE 33-bus and 123-bus net-
works. Handles renewable uncer-
tainty while maintaining safety
constraints.

4.3.1 Constrained Optimization Approaches

Lagrangian Methods for Safe MARL

We introduce a general framework for safe MARL, leveraging general

utilities (see, e.g.,

max F(6
[

s.t.

Gr(0) ==

(Ying et al., 2024)):

(dg?)

K
X2 f
k:l
gr (g’

) =0,

Vk € [K]

where 0 = {Qk}ke[K] denotes the joint policy parameters. Here, f; and

gk, are general utilities (i.e., nonlinear functions) of the local state-action
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occupancy measure d;° for agent k, which is defined as:

o
i (sk,ar) = > V'P(s), = s, af, = ag|ms, s° ~ p).

t=0
The general utilities include the standard cumulative reward/cost for-
mulation when choosing fi = <d7,;9, rk), where ¥ is the vector of reward
for each state-action pair for agent k, but also include other settings
such as imitation learning and exploration.

To solve this constrained optimization problem, primal-dual opti-

mization techniques use the Lagrangian function (Zhang et al., 2020b;
Gu et al., 2023; Ying et al., 2024):

1
L(O,X) = F(0) + — Y MGi(0). (4.1)
K
kel
where A = (A1, A2, ..., Ak ) are the Lagrange multipliers associated with

the local constraints. The algorithms alternate between updating the
policy parameters 6 (primal update) and the Lagrange multipliers A
(dual update). For the primal update, Gu et al. (2023) propose the Multi-
Agent Constrained Policy Optimization (MACPO) algorithm, which
solves a constrained optimization problem for each agent k£ using trust
region methods. Zhang et al. (2020b) introduce distributed consensus-
based algorithm using networked exchange of dual variables that allows
for efficient handling of edge-based constraints without requiring a fully
centralized approach.

A key insight that enables efficient implementation is the spatial
correlation decay property in many multi-agent systems. This property
recognizes that an agent’s influence on others typically diminishes with
distance—much like how changes in one part of a power grid have
decreasing effects on distant areas. Ying et al. (2024) leverage this
natural decay in influence and develop Scalable Primal-Dual Actor-
Critic method for the primal update. Here, each agent k can effectively
estimate its policy gradient using information from only its x-hop
neighborhood:

A

Vo, LON) =E | >V, logmy, (axls) - (Q}ril(s, a) + A\ Agzl(s,a)) ,
k'eN* (k)
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where N*(k) denotes the k-hop neighborhood of agent k, and QA}:’/ and

lef, are truncated shadow Q-functions. This localized computation
efficiently approximating the global quantities using local information
within a x-hop neighborhood.

For the dual update, a common approach is to use projected gradient
descent:

)‘H—l = [)‘Z - nAv)\L(eia )‘i)]+7 (42)

where 7)) is the step size. This can be done in a centralized fashion
where all the dual variables A are updated jointly (Gu et al., 2023), or
in a decentralized way where each agent k updates its own Lagrange
multiplier A; based on its local constraint information by leveraging
the spatial correlation decay property (Ying et al., 2024).

4.3.2 Trust-Region Method

Adapting trust region methods to MARL introduces several chal-
lenges, including decentralized decision-making, partial observability,
non-stationarity, coordination, and scalability.

Zhang et al. (2024a) develop Consensus Multi-Agent Constrained
Policy Optimization (CMACPO) to address these challenges. In this
framework, each agent £ maintains a local policy 7T,i€ at iteration ¢ and
makes decisions based on local observations. For each agent, the method
uses the single-agent CPO formulation (see (2.1), where 7% is used
for agent k’s policy at iteration i), followed by the same linearization
approach as single-agent CPO. To address partial observability and pro-
mote coordination, CMACPO implements a networked communication
structure where agents share information with neighbors. A key innova-
tion is the consensus mechanism that aligns value function estimates
across agents:

o= D wlk K)o
K'eN (k)
where ¢ represents the local value function parameters and w(k, k')
denotes the communication weight between agents k and k’. This con-
sensus step helps mitigate non-stationarity by promoting consistent
value estimation across the network while maintaining the decentralized
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nature of the algorithm. This method is applied to optimize the behav-
ior of aggregated flexible loads (agents) in a distribution network. The
trust region approach ensures stable learning, the safety constraints
enforce carbon emission limits, and the consensus mechanism allows for
coordination among loads while respecting the network structure.

Shi et al. (2023) combine trust region concepts with safety constraints
in a MARL setting, using a centralized safety layer during training to
guide decentralized policies towards safe behavior. The trust region idea
is used in the policy update mechanism:

tax Ev e Q7 (5,0) — wDcr W (ar, o) IN (@, o2l (43)

where Q™ is the action-value function under policy 7, N (ax, o2) and

N (a?j‘fe, 02) are the Gaussian distributions of actions from current
and computed safe policies with corresponding means and variances,
respectively, and p is the penalty coefficient for the KL-divergence
term. The key difference with standard CPO is that this formulation
constrains the policy to stay close to computed safe actions rather than
the previous policy iterate. This allows for safe, decentralized execution
in voltage control tasks, addressing the challenges of maintaining voltage

stability in complex power distribution networks.

4.3.3 Control-Theoretic Approaches

Distributed and decentralized CBFs have emerged as a promising ap-
proach for ensuring safety in MARL systems. By leveraging the power
of GNNs, these methods can effectively handle large-scale, dynamic
environments while maintaining scalability and generalizability (Qin
et al., 2021; Zhang et al., 2023e).

For a multi-agent system with K agents, consider the joint state
space § = kazlSk and individual state-observation spaces X :=
Sk X Ok, where each agent k has state s € Sk, local observation
o € O. Let the dynamics be $; = fi(sk, ar). We define the safe set
as g = {(s,0p)|h(sk,06) > 0}, and dangerous set as Apnsafe —
{(8k,01)|h(sk,0r) < 0}. The key idea behind decentralized CBFs is to
assign a local CBF By, to each agent k in the system. These local CBFs
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capture the safety constraints between the agent and its neighbors,
allowing for a distributed safety framework.

Definition 4.1 (Decentralized Control Barrier Function). A continuously
differentiable function By, : X, — R is a decentralized control barrier
function if it satisfies:

1) V(sg, o) € X By (sk, o) > 0;

2) Y(sg,0r) € Xk“nsafe, By(sk,0r) < 05

3) V(sk, o) € {(sk, or)|Bk(sk,0r) > 0}, implies that:

sup vskBk(3k70k)Tfk(ska ak) + kaBk'(Sk7 Ok)Ték + a(Bk(Skv ak)) > 07
ay

where « is a class K function.!

The fundamental distinction from traditional CBFs (c.f., Theorem
3.2) lies in the decentralized architecture. While a traditional CBF
operates on the full state space S with complexity growing exponentially
in K, a decentralized CBF maintains constant complexity by operating
only on local information Xj. This enables scalable implementation
without requiring centralized coordination. Global safety emerges from
local contracts: when each agent satisfies its local CBF condition, the
composition of these local guarantees ensures system-wide safety.

To handle variable numbers of neighbors and enable efficient learning,
graph neural networks are employed to parameterize the local CBFs
By, and the control policies 7. The GNNs take the agent’s state and
observations of its neighbors as input, and output the CBF value and
control action. The use of GNNs allows for permutation invariance and
scalability to large-scale systems (Qin et al., 2021; Zhang et al., 2023e).

The joint learning of the CBFs and control policies is typically
formulated as a constrained optimization problem, where the objective
is to minimize the violation of the local CBF conditions while ensuring
task performance summed over all agents. Using CTDE, this closely
resembles the single-agent method discussed in Sec. 3.2. By decomposing

'Here, 0y is the time derivative of the observation, which represents coupling
between agents. While there is no explicit expression for this term, it can be approx-
imated in the learning process, e.g., 0 ~ ok (tH+3aise) =0k (®)

disc
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the safety constraints into local CBFs, the approach can handle large-
scale multi-agent systems with reduced computational complexity.? The
learned CBFs and policies can generalize well to unseen scenarios, such
as different numbers of agents or new environments.

However, there are also practical considerations to keep in mind.
First, while the framework is decentralized, agents still need to exchange
information with their neighbors to evaluate the local CBFs and compute
control actions. Also, decentralized CBFs may lead to conservative
behavior, as each agent considers its safety independently without
explicit coordination.

4.3.4 Distributed Optimization Perspective

Distributed optimization techniques can be effectively combined with
CBFs to achieve safe distributed control in multi-agent systems (Tan
and Dimarogonas, 2021; Bai et al., 2024). Recent advancements in
distributed CBFs and distributed optimization reveal a common prin-
ciple: maintaining feasibility of all constraints (both local and global)
at every iteration (not just at convergence), also known as distributed
feasible primal methods. This is crucial for safety-critical systems where
intermediate infeasible solutions could lead to system failures.

This is exemplified in the distributed CBF approach by (Tan and
Dimarogonas, 2021) and the Distributed Feasible Method (DFM) (Wu
et al., 2023) for optimization. Both approaches reformulate centralized
problems into distributed forms. The distributed CBF transforms the
centralized QP:

. 1 T
mamz iHak—agomHz st Y Apap+ Y b <0
kek kel kel

2In partially observable environment, safety is ensured under some key assump-
tions (e.g., (Qin et al., 2021)): 1) Local and reciprocal observability: Each agent k can
observe nearby agents within a radius significantly larger than the safety threshold.
If agent k can observe agent k', then k' can also observe k and 2) Transitive Safety:
Safety between directly unobservable agents is ensured through the chain of pairwise
safe interactions.
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Into a distributed form with auxiliary variable y:

- nom 2
min 3 ok — o}
kGIC
st. Ajar+ > (yk—yw)+b <0, VkeK
k'eN (k)

where a}°™ is the nominal (desired) control action for agent k, Aj and

b, are the CBF constraint matrix and offset for agent k, respectively,?
and y; is the auxiliary variable.

This allows decomposition of the coupled problems into local sub-
problems using distributed optimization techniques, where each agent
maintains its copy of auxiliary variables and only need to communicate
with its neighbors. The global feasibility is maintained because:

ZAkak’"‘ Z (Y — yw +bk—ZAkak+Zbk<O

kek k' eN(k ke kek

DFM, on the other hand, uses auxiliary variables g, along each edge
that satisfies > pear() A qrrr = 0 to maintain feasibility during up-
dates.

A key focus is to ensure constraint satisfaction throughout the
optimization process. For instance, Bai et al. (2024) develop a dis-
tributed hybrid gradient projection ADMM algorithm and prove its
convergence to the optimal solution under appropriate conditions while
guaranteeing coupling constraint satisfaction at each iteration. Tan and
Dimarogonas (2021) propose a normalized subgradient flow to update
the auxiliary variables, which converges to the optimal solution in finite
time while maintaining constraint satisfaction. Note that the finite time
convergence is a property not typically found in standard distributed

3The terms Aj and by in the distributed CBF formulation emerge from the
safety set defined by a continuously differentiable barrier function B(s) > 0. For a
control affine system § = fs(s) + fa(s)a, the CBF condition requires Vs B(s) " (fs(s)+
fa(s)a) + a(B(s)) > 0, which can be rearranged into the linear constraint form
Af a4+ by <0. Here, A] = —VsB(s)" fa(s) captures the gradient of B with respect
to control input, and by = —VB(s) " fs(s) — a(B(s)) encompasses the drift terms
and class I function effects. Crucially, these terms must be locally computable by
each agent using only information from its neighbors, as assumed in the distributed
implementation.
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optimization algorithms which often have asymptotic convergence. Tan
et al. (2024) extend (Tan and Dimarogonas, 2021) to a more general
class of distributed optimization problems, not limited to CBF-QPs and
handles multiple coupling constraints. It also introduces a continuous-
time algorithm and uses a subgradient-based approach for updating
auxiliary variables, which can handle a broader class of non-smooth
objective functions. These approaches provide a powerful tool for achiev-
ing safe distributed control in multi-agent systems and have promising
applications in safe MARL.



5

Safety System Architecture

The pursuit of extreme safety in power systems presents significant
challenges when applied to RL systems. Runtime Assurance (RTA)
architectures have emerged as a crucial framework, providing an im-
plementable safety system architecture that complements broader safe
and multi-agent RL approaches (Schierman et al., 2015; Hobbs et al.,
2023). These architectures provide formal guarantees by monitoring
and modifying control actions in real-time, effectively bridging the gap
between high-performance learning controllers and safety-critical power
system operations.

In this chapter, we introduce the two main categories of RTA
architectures—Simplex and Safety Filter—and examines their imple-
mentations in power systems (Sec. 5.1 ). Sec. 5.2 discusses various
approaches for integrating safety mechanisms into the learning pro-
cess itself. Finally, Sec. 5.3 addresses practical considerations including
innocuity, viability, and nuisance-freedom, while highlighting future
research directions in this domain.

67
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5.1 RTA Architectures for Safe Learning Systems

RTA architectures for safe learning systems primarily fall into two
categories: Simplex Architecture and Safety Filter (SF) (see Fig. 5.1
for an illustration). In essence, Simplex provides a “fallback” mecha-
nism (switching between controllers), while SF provides a “correction’
mechanism (continuously adjusting actions). While Simplex is partic-
ularly suitable for applications demanding robust safety guarantees

9

and formal verification, SF is potentially less conservative as it can
make minimal modifications rather than completely switching to a
backup controller. The following sections detail these architectures and
their implementations in power system applications (see Table 5.1 for a

comparison).
(A) Simplex Architecture (B) Safety Filter
”””””””” ! ! safety filter |
fallback safety 3 ! safety
controller | monitor @ 3 ! monitor @)

R ] : D RREEEEEE '

rimar primary ; !
czntrollér ) power controller ¢ /Ly power
" ici system ) ' unGafe ! system

(e.g., RL policy) decision (50, (L i) : ;

logic

Figure 5.1: Comparison of RTA architectures. (A) Simplex Architecture
employs a switching mechanism between a primary learning controller and a backup
controller based on a safety monitor’s decision logic. (B) Safety Filter Architecture
continuously modifies control inputs through projection to a set (dark blue) as
a conservative approximation to the safe set (light blue) to ensure safety while
minimizing deviation from the primary controller’s intended actions.

Simplex Architecture The Simplex Architecture (Seto et al., 1998)
employs a switching mechanism between a primary learning controller
and a verified backup controller. Let 7 : S — A be the learned policy
and Thackup : S —+ A be the backup policy. The Simplex control law is
defined as:

7(s) if s € Sqate

a(s) =

Thackup(s) otherwise
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where Sgae = {s € S|h(s) > 0} is the safe set defined by a Simplex
monitor h : & — R, which can be either learned or estimated. This
architecture enables safe exploration by providing a fallback mechanism,
separating performance and safety concerns.

Chen et al. (2022) design a physics-based Simplex mechanism pre-
venting BESS SoC depletion or overload by replacing unsafe actions
near safety bounds. Sun et al. (2024) implement action selection using
voltage sensitivity-based rules to minimally modify control actions. Xia
et al. (2022) deploy Simplex for MARL in networked microgrids using
dual neural networks: Safety Evaluation Network predicting safety costs
(monitor) and Action Guidance Network generating safe actions (backup
controller). Their approach integrates safety directly into multi-agent
SAC learning, enabling safe exploration during training and deployment.

Safety Filter (SF) Safety filter (Hewing et al., 2020; Brunke et al.,
2022; Hsu et al., 2023), on the other hand, continuously modifies control
inputs to ensure safety. It is often implemented using CBFs. This
approach integrates safety constraints directly into the learning process,
aiming for minimally invasive interventions.

AdapSafe, proposed by Wan et al. (2023), exemplifies the safety
filter approach in Safe RL for power system frequency control. It uses
Zeroing CBFs to ensure safety: sup, [Ly, B(s:) + Ly, B(s¢)(a™ +uy) +
a(B(s))] > 0. Here, s; is the system state, a™ is the RL action, u,
is the safety compensation, B(s;) is the CBF function, and Ly, and
Ly, are Lie derivatives corresponding to the control-affine dynamics
$ = fs(8) + fa(s)a. The class-K function « is adaptively tuned:

));

where Af denotes frequency deviation, A fyound 1S the safety bound,

. T m

a = ez exp(—tan(e - clip(Af — Afoound, =5 5

and es and eg are tuning parameters. The safety filter is integrated into

learning via reward shaping: r(s¢, a;) — e1||u,|| , where r; is the original
reward and e is a penalty factor.

Wang et al. (2023b) use Physical-Informed Safety Layer which

corrects unsafe actions by solving: arg min e 3|/as**® — af![|? subject to
t

hsafe (ggafe) > 0.5, where af! is the original RL action and @ is the
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Table 5.1: Comparison of RTA Applications in Power Systems

Context RTA Architecture Learning Integration Implementation
(Wan et al., 2023): SF with CBF; QP- Exploration and de- GP-based model
LFC with renew- based optimization; Un- ployment; Action adaptation; Innocu-
ables; Freq mnadir, latched recovery; Self- post-processing; Meta- ity via  forward
RoCoF tuning CBF parameters learning adaptation invariance

(Shi et al., 2023): SF with QP; First- Training and deploy- 322-bus scalability;
Active voltage con- order optimization; ment; Action correction Centralized — safety

trol; Voltage bounds;
MARL

Data-driven
prediction

voltage

penalty

layer; Demonstrated
nuisance-freedom

(Zhao et al., 2023):
Transient stability;
Freq/voltage bounds

SF with neural CBFs;
Gradient-based OPT;
Unlatched filtering

DDPG primary con-
trol; Barrier pretraining

phase; Online adapt.

Demonstrated
nuisance-freedom;
Centralized training

(Xia et al., 2022):
Microgrid freq con-
trol; Freq. and oper-
ational safety

Simplex; Prediction-

correction scheme;

Unlatched monitoring

Simultaneous training of
safety and RL; SAC pri-
mary control; Integrated
prediction-guidance

Fully
No
needed; Safety viola-

decentralized;
communication

tion tracking

(Sun et al., 2024):
VVC in unbalanced
networks; V bounds

Simplex; Sensitivity-
based optimization;
Human-guided interven-

tion

Training with hybrid re-
play; DRL primary; Hu-
man guidance in actor
loss

Local sensitivity con-
trol; Voltage profile
metrics; Minimal

modifications

(Wang et al., 2023b):
Multi-energy micro-
grids;  Power/gas

constraints

SF-like with binary
classifier; Optimization-

based correction

Training and deploy-
ment safety; PPO pri-
mary; Online rule up-
dates; Safe exploration

Multi-agent scaling;
Online adaptation

(Zhang et al., 2023c):
Voltage control; V
bounds

SEF with DNN projec-
tion; Finite iteration al-
gorithm

DRL primary; Inte-
grated projection DNN;

Safe space exploration

33-bus system; Zero
violations achieved

(Chen et al., 2022):
Active voltage con-
trol; V/Battery SoC
constraints

Simplex; Physics-based
back up actions; Local
shielding

Training and deploy-
ment integration; DRL
primary; Shield-guided
critic training

Centralized  train-
ing; Distributed
execution

corrected safe action. A supervised learning model hsafe is trained to
classify the safety of current operating points using logistic regression,
which provides a reasonably accurate approximation of the true safe
operating region. The security assessment rule is continuously updated
during RL training. Note that the accuracy depends on the quality
and coverage of the training data and may not capture all possible
constraint violations, especially for rare or extreme scenarios.

Zhao et al. (2023) introduce an adaptive online update mechanism to
handle model uncertainties in power systems. This mechanism minimizes
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the following objective at each time step, effectively projecting the
policy’s action onto the safe set defined by the barrier function:

max (0, VB(s) " f(s,mg(s) +u)) + e|lu.|3

where B(s) is the learned barrier function, e is a weight adjustment,
mp(s) is the control policy, and u, is a refinement to the control action.
By adapting the control action in real-time, this approach provides a
practical way to maintain safety guarantees when faced with model
inaccuracies or unseen scenarios.

5.2 Integration of Safety into Learning

Integrating safety into learning allows policies to internalize constraints
during training rather than relying on external restrictions.

Chen et al. (2022) store both pre- and post-filtered actions in expe-
rience replay, enabling critics to learn from safety interventions while
penalty terms encourage actors to generate inherently safer actions.
This coupling between safety filtering and policy learning internalizes
constraints during training.

Zhang et al. (2023c) integrate safety constraints into DRL through
a DNN-assisted projection mechanism active in both forward and back-
ward passes. During the forward pass, the actor’s action a = my(s) is
projected through a trained DNN projector Pgase to produce feasible
actions @ = Psafe(a) that satisfy power system voltage constraints. In
backward pass, projection gradients flow through actor updates via
VoJ(0) = E[-VaQ(s,a)VoPsate(mg(s))], where Q(s,a) is the critic’s
value estimate for state-action pairs and J(0) is the policy performance
objective. This architecture allows the actor to learn policies that in-
herently generate safe actions rather than relying on external post-hoc
filtering.

Shi et al. (2023) combine MADDPG with trust region concepts
through a data-driven safety layer for action correction. The safety
layer uses first-order voltage prediction v*(o,a + da) =~ v(o,a;0,) +
Vv(0,a;86,) - da, where v(o,a;0,) is the predicted voltage from neural
network with parameters 6,, o is the current observations, a is the
original action, Aa is the action correction. Safe actions are computed
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via quadratic programming: ming, 3daf? s.t.  0.95 < v(o,a;0,) +
Vav(o,a;0,) - da < 1.05 which finds the smallest possible action cor-
rection that ensures voltages stay within safe limits. Policy learning
incorporates safe actions through trust region updates, i.e., (4.3), which
ensures the policy stays close to safe actions. An action correction sub-
network (ACS) learns to mimic safety layer corrections by minimizing
the loss (for agent k): dist(ax, ag) + ellay — a5*||2, where dist(ax, ax) is
the distance function based on Q-values between the original action a
and the corrected action ag, and a?ffe is the safe action from safety layer.
This loss guides the sub-network to learn corrections that both improve
Q-values and stay close to safety layer outputs. During decentralized
execution, the ACS is used in conjunction with the main policy network
similar to a safety layer to produce a correction. This allows the agent
to approximate the behavior of the centralized safety layer using only
local information.

5.3 Practical Considerations and Future Directions

RTA framework has three key properties (Hobbs et al., 2023). First, in-
nocuity ensures that safety interventions preserve all system constraints.
Second, viability requires that from any state, there exists a sequence
of actions that maintains safety indefinitely. This implies the RTA must
never allow the system to enter states where safety recovery becomes
impossible. Finally, nuisance-freedom demands minimal intervention.
Nuisance-freedom has been primarily addressed through optimiza-
tion approaches. For instance, Wan et al. (2023) employ QP formulation
with self-tuning parameters, while Zhang et al. (2023c) explicitly min-
imize the fo-norm between desired and safe actions. Innocuity and
viability have received partial attention, as most works consider only in-
stantaneous safety constraints without addressing potential future state
violation. Nevertheless, works that use CBF theory to prove forward
invariance, such as (Wan et al., 2023), addresses both innocuity and
viability. This is because the CBF condition sup,c 4[B(s)+a(B(s))] > 0
ensures the existence of an instantaneous safe action, which implies the
existence of infinite-horizon safe trajectories required for viability.
While some progress has been made in handling stochastic dynamics
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through GP regression and uncertainty handling, developing proba-
bilistic safety guarantees remains an open challenge. The integration
of formal methods with RL has seen initial steps through CBF-based
approaches, but significant work remains in developing frameworks that
can provide rigorous safety guarantees while accommodating RL’s adap-
tive nature. Additionally, enhancing interpretability and explainability
of RL policies through techniques such as symbolic regression remains
largely unexplored in current RTA implementations. These challenges
suggest promising directions for safety system architecture.
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Power System Applications

This chapter examines how Safe RL addresses critical power system
problems across multiple timescales (Fig. 6.1), from sub-seconds to
day-ahead planning, highlighting how operational challenges inform
appropriate SRL method selection.

At fast timescales (sub-seconds to minutes), frequency regulation
(Sec. 6.1) and volt-var control (Sec. 6.2) demand real-time computation
and rapid response. FR maintains the critical generation-consumption
balance underpinning system stability, with challenges in coordinating
diverse resources under reduced system inertia while enforcing strict
frequency bounds. VVC ensures power quality and voltage stability
across distribution networks, growing more complex with high DER
penetration and requiring coordination of numerous devices while re-
specting equipment limitations. Both applications face challenges from
communication delays and physical safety guarantees, where SRL meth-
ods prioritize computational efficiency through safety-certified policies
and action masking for both discrete and continuous control.

At intermediate timescales (minutes to hours), optimal power flow
(Sec. 6.3) and critical load restoration (Sec. 6.5) balance computational
complexity with system safety. OPF determines the most economic
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Frequency Regulation (FR) Safety: Frequency bounds,
. ROCOF, generator capacity and
Primary Seco'nda['y ramp limits, grid-forming inverter
(governor Gl (AGC, time-line constraints (voltage, power)
inverter-based) management)
Safety: Voltage bounds, __| , Volt-Var Control (VVC)
inverter/capacitor rating, Fast inverter-based System-wide reconfig., Safety: Voltage, tf’ef’”a’
switching limits reactive power device switching overload, DER lln7!ts,
support (tap changers, capacitors) topology constraints

Critical Load Restoration (CLR) ’—l—‘

Safety: Line flow capacity, voltage __ [ Optimal Power Flow (OPF)
regulation, generator capacity, contingency

constraints (post-fault viability). Real-time OPF, Market-
security-constrained based
economic dispatch scheduling

Safety: Equipment capacity, comfort -
(temperature, lighting), local power * Demand-Side Management (DSM)

flow or circuit constraints Quick load adjustments, HVAC scheduling,
short-term peak shaving aggregator-based DR

Safety: SOC constraints, charging power __| EV Charging Coordination
limits, distribution network constraints

(transformer capacity, voltage dips) Real-time Bulk EV charging, aggregator

V2G decisions
Milliseconds Seconds Minutes Hours Day;
Fast-Timescale Challenges Slow-Timescale Challenges
(® Real-time computation 2) Communication || (1) Uncertainty (2) Optimality/Feasibility
delays (3 Physical safety/stability (3 Robustness/Security (4) Complexity

Low-complexity/feedforward RTA, CBFs, meta-learning,

policy, safety-certified policy, action-masking, | optimization-based methods, robust RL,
distributed controller (local data) agent coordination

Figure 6.1: Overview of Power System Applications by Timescale and
Safe RL Challenges. The top portion arranges key applications along a time axis
(horizontal bar), from fast frequency regulation (sub-seconds to minutes) through
volt—var control and critical load restoration (minutes to hours), up to optimal power
flow, demand-side management, and EV charging coordination (hours to day-ahead).
Each application notes its key safety constraints. The lower labels highlight major
challenges across different timescales and give examples of Safe RL methods (RTA,
CBFs, meta-learning, action masking, distributed controllers) that address these
challenges at different scales.

operating point while satisfying complex network constraints and opera-
tional limits under significant generation and demand uncertainties. CLR
ensures rapid recovery after outages through coordinated resource man-
agement. These applications require coordinating multiple devices under
uncertainty, where SRL approaches employ control barrier functions
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and RTAs to maintain safety constraints while optimizing performance.

At slower timescales (hours to days), demand-side management
(Sec. 6.4) and EV charging coordination (Sec. 6.6) address large-scale
optimization under uncertainty. DSM leverages flexible loads for system
efficiency and renewable integration, balancing grid objectives with
user comfort while respecting system and device limitations. EV charg-
ing coordination manages growing vehicle-grid interactions, satisfying
charging requirements while preventing network congestion. These ap-
plications contend with extensive state-action spaces and extended
planning horizons, where multi-agent methods excel for geographically
distributed systems.

Beyond these operational controls, power system state estimation
(Sec. 6.7) provides foundational situational awareness by handling model
uncertainties and measurement anomalies with bounded error guaran-
tees. Cybersecurity (Sec. 6.8) enables adaptive detection and mitigation
of sophisticated threats while maintaining stability during attacks. These
applications demonstrate Safe RL’s adaptability to specialized power
system requirements.

This chapter builds upon the fundamental Safe RL algorithms from
Chapters 2 to 5. To illustrate how theoretical frameworks can be trans-
lated into practical power system control solutions while maintaining
safety guarantees, we provide detailed formulations for two key applica-
tions: FR and VVC. Throughout this chapter, we highlight both the
commonalities in safe learning across applications and the unique con-
siderations that arise in each domain. The subsequent sections examine
each application in detail, supported by comprehensive comparisons of
recent research advances in Tables 6.1-6.6.

6.1 Frequency Regulation

Frequency regulation maintains the critical balance between power gener-
ation and consumption, with deviations from nominal values potentially
causing equipment damage, instability, or blackouts. Traditional control
architecture operates across three timescales: primary control (seconds,
via governors and grid-forming inverters), secondary control/AGC (min-
utes, restoring nominal frequency and managing tie-lines), and tertiary
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Table 6.1: Comparison of SRL for Frequency Control

Control Level System Model Safety Types Key Assumptions Test Systems
(Jin and Lavaei, Swing equation dy- Stability certifi- Uncertain but IEEE 39-bus sys-
2020): Primary namics cates via robust bounded  system tem, Initial con-
control control IQCs parameters, Small dition responses
angle assumption tested
(Xia et al., 2022): Multi-source inte- Frequency Small signal sta- Multi-microgrid
Multi-level control, gration, Linearized bounds, ESS  bility, Decentralized network, Real
Economic optimiza- LFC model, Area- constraints, control, Known sys- load/PV profiles,

tion

based control

Safety prediction

tem parameters

Various scenarios

(Gu et al., 2022): Pri-
mary control

Linearized syn-
chronous generator
model, Swing

equation dynamics

Exponential
stability via Lya-
punov certificates

Uncertain but
bounded  system
parameters,  Lin-

earized operation

IEEE NE39,
Single communi-
cation  topology
variants

(Cui et al., 2023):

SG and IBR integra-

Frequency limits,

Lossless system,

IEEE NE39, Step

Primary control, Lo- tion, PLL-based in- Power constraints, Known inertia and load changes,
cal frequency regula- verters, Swing equa- Local Lyapunov damping, Angle Kron reduc-
tion tion dynamics stability difference bounds tion, Random
conditions

(Wan et al., 2023): Swing equations, Frequency nadir, Uncertain but GB 2030 sys-
Integrated primary Governor-droop ROCOF  limits, bounded parame- tem, Multiple
and secondary con- model Power bounds, ters, Linear load contingencies, Pa-
trol CBF damping model rameter variations
(Kwon et al., 2023): SG-GFM  hybrid, Risk-constrained Linearized model, Modified IEEE 68-
Primary control, P-w & Q-V droop LQR, Frequency Neighbor communi- bus, GFM integra-
Fast frequency control, Network- stability, Cost cation, Parameter tion, Multiple sce-
regulation coupled model variance bounds certainty narios

(Zhao et al., 2023): Swing  equations Frequency/Voltage Interface volt- IEEE 13-, 39-
Primary transient for SGs, Droop- limits, Transient age constant in 118-bus systems,

stability control

controlled inverter
dynamics

stability, CBFs

transients

Transient stability
scenarios

(Shuai et al., 2024):

GFM-based system,

Power limits, Fre-

Lipschitz dynamics,

Single GFM setup,

Primary control, Swing equation dy- quency Lyapunov Neglected reactive Progressive distur-
Fast regulation namics, VSG con- stability, Distur- power, Parameter bances

trol, AC power flow bance handling uncertainty
(Liu et al., 2024b): Traditional SG  Frequency  sta- Small-signal model, IEEE 39-bus,
Secondary control, focus, Multi-area bility, Lyapunov Available ACE mea- FGSM cyber
Tie-line manage- model, Classic guarantees, At- surements, Known attacks
ment dynamics tack robustness system parameters
(Yuan et al., 2024): Swing  equations, Frequency Known system IEEE 39-bus,
Transient frequency Aggregate bus bounds, Lya- parameters, Distur- Measurement
control model punov stability bance vanishes in noise tests, Par-

finite time

tial info scenarios

control (15-30 minutes, optimizing generation and restoring reserves).

Conventional approaches using proportional-integral (PI) controllers
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and droop control face challenges from renewable energy uncertainty
and reduced system inertia.

RL for FR demonstrates several technical approaches:

Control architecture implementations span primary to secondary lay-
ers. Fast-timescale approaches (Cui et al., 2023; Shuai et al., 2024) focus
on local frequency regulation through grid-forming (GFM) inverters, op-
erating at millisecond timescales. Secondary control frameworks address
Area Control Error (ACE) and tie-line management (Liu et al., 2024D).
Some approaches bridge timescales—integrating inertial response with
primary/secondary objectives (Wan et al., 2023) or combining frequency
regulation with economic dispatch (Xia et al., 2022).

System modeling reflects modern grid requirements, incorporating
Phase-Locked Loop (PLL) dynamics (Cui et al., 2023), voltage-source
converter control (Kwon et al., 2023), and the swing equation at vary-
ing complexity levels. Safety frameworks employ CBFs for explicit
constraints on frequency nadir and ROCOF (Wan et al., 2023) and
risk-constrained LQR for stability under uncertainty (Kwon et al., 2023).

Parameter uncertainty treatments include: known parameters with
local measurements (Cui et al., 2023), explicitly bounded uncertain-
ties (Wan et al., 2023), and Gaussian Process modeling for unknown
dynamics (Shuai et al., 2024). The treatment of uncertainty becomes
particularly relevant for renewable integration scenarios where system
parameters may vary significantly.

Test implementations span single-GFM setups to modified IEEE
cases, with validation focusing on frequency response under various
disturbances. Load changes, generator outages, and cyber attacks serve
as common test scenarios. Some studies incorporate explicit communi-
cation constraints (Kwon et al., 2023; Liu et al., 2024b).

6.1.1 Safe RL Formulation for Frequency Control

The frequency control problem can be formulated as a CMDP:

State Space The state space S captures power system dynamics, e.g.,
{Af, %, Dgen Dties PIISE,, p}ﬁi\s/t} C s € S, where Af is frequency devia-

tion from nominal value (Hz), % is RoCoF (Hz/s), pgen is generator
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outputs, piie represents tie-line flows between interconnected areas, and
p{loi;g, p}léi\s} capture historical load and renewable generation. The state
space design reflects a fundamental trade-off between observability and
complexity. For example, including historical measurements helps handle
system delays and uncertainties, while the RoCoF term enables better
dynamic response prediction. The specific choice of state variables may
vary based on the application context—interconnected transmission
systems might emphasize tie-line flows, while isolated microgrids might

focus more on local power balance.

Action Space The action space A comprises control adjustments,
e.8., {Apgen, Apy, Aprss} C a € A, where Apgen, Apy, Aprss repre-
sent adjustments to conventional generators, renewable sources, and
energy storage respectively. The action space design should account
for the characteristics of different power sources. For instance, conven-
tional generators have slower response times but larger capacity, while
inverter-based resources offer faster response but may have limited
power reserves.

Reward Function The reward function r : § x A — R balances
multiple control objectives. For example, 7(s, a) = —(eq||Af||?+ez| al/?>+
es||ptie —Pi]|2 +€4Cgen), where ey, ..., e4 are weighting coefficients, || A f||?
penalizes frequency deviations, ||al|? represents control effort, ||pie —
pret||? maintains scheduled tie-line flows, and cgen represents generation
costs as a function of pgen. For multi-agent systems, the reward can
include cooperation terms, e.g., 1, = r}cocal + €coord D ke N (k) T‘Z(;;,lphng,
where N}, represents the neighboring areas and e¢oorq balances local and

cooperative objectives.

Safety Constraints Safety in frequency control involves both oper-
ational limits and stability guarantees. The operational constraints
include frequency limits (fmin < f < fmax), ROCoF bounds (]%\ <
A fbound), generation limits (Pgenmin < Pgen < Pgenmax), Tamp rate
constraints (|%| < rmax)- Stability guarantees can be implemented
through multiple complementary approaches, including CBFs (Wan

et al., 2023) and Lyapunov stability (Cui et al., 2023).



80 Power System Applications

The choice of safety implementation depends on system requirements
and computational resources. These constraints can be encoded as
expected cumulative constraint for long-term averages, which is suitable
for managing thermal limits or battery lifecycles, or almost surely
instantaneous constraint for strict bounds, essential for frequency limits.
CBFs provide continuous safety guarantees but may be computationally
intensive, while learned safety models offer computational efficiency but
may provide weaker guarantees.

Performance Evaluation Metrics The effectiveness of RL controllers
is evaluated using several key metrics.

Frequency-related metrics include mean absolute frequency devia-
tion: Y, |Af(t)|, peak frequency deviation: max; |Af(t)|, and maximum
RoCoF: max; |%(t)|, and frequency nadir: min, f(¢), i.e., lowest point
that the system frequency reaches following a disturbance before it starts
to recover. The frequency nadir captures transient stability concern:
if the frequency falls too low during this transient period, protective
relays may trigger, leading to cascading outages and potential blackouts.
The system needs to maintain synchronism through this critical period.

The control effort can be evaluated through average control effort:
S la(t)]|?, generation costs: Y, Cgen(Pgen(t)). For interconnected sys-
tems, the performance can be evaluated using tie-line power deviation:
> lIptie(t) — pist||2, and local area control error: 3, || ACEL(1)||?.

For safety constraints, >, I(c(st, at) > &) counts constraint viola-
tions. For stability, the region of attraction is typically examined (Gu
et al., 2022; Cui et al., 2023; Shuai et al., 2024).

6.1.2 Safe RL Techniques for Frequency Regulation

Lyapunov-Based Stability Methods These methods incorporate model-
based Lyapunov stability analysis into learning, providing rigorous sta-
bility guarantees through mathematical certificates. Jin and Lavaei
(2020) establish this approach by combining TRPO with stability cer-
tificates based on IQCs, implementing stability penalties for gradient
regulation and hard thresholding of network weights. This provides
input-output stability guarantees while maintaining learning perfor-
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mance through careful regulation of the policy update process. Cui et al.
(2023) introduce RNN-based controllers with Lyapunov certification,
enforcing monotonicity constraints while providing local exponential
stability guarantees. Shuai et al. (2024) combine MBRL with Lyapunov
theory and approximate dynamic programming, using a dual-purpose
Lyapunov function for determining attraction regions and optimization,
with Gaussian Process modeling for uncertainty quantification. Liu
et al. (2024b) integrate DDPG with monotonic neural networks, enforc-
ing deviation-command monotonicity through architecture rather than
external constraints. Yuan et al. (2024) advance this category with a
dynamic budget mechanism within the Lyapunov framework, combining
RNN-based architecture with distributed safety enforcement that allows
temporary local violations while maintaining global stability.

Barrier Function-Based Methods These approaches utilize CBFs to
ensure safety through forward invariance properties of safe sets. They
typically use safety filter as the architecture and integrate with model-
free RL. Zhao et al. (2023) introduce a neural barrier function approach
combining DDPG with a barrier-certification system, implementing
a two-stage process where control actions are filtered through neural
barrier functions, providing bounded generalization error guarantees
and adaptive refinement for online operation. Wan et al. (2023) present
an adaptive CBF-based framework with meta-learning capabilities, im-
plementing a hierarchical structure where a CBF compensator modifies
RL policy actions, incorporating adaptive Gaussian Process regression
to learn model corrections online and address model uncertainty.

Risk-Constrained Methods These methods enhance robustness for
worst-case scenarios through statistical risk measures or adversarial
training. Kwon et al. (2023) develop a risk-constrained approach in-
tegrated with LQR, explicitly bounding state cost variability through
Lagrangian relaxation. The solution method employs a stochastic gradi-
ent descent with max-oracle (SGDmax) algorithm, utilizing zero-order
policy gradient (ZOPG) for efficient gradient estimation. The approach
prioritizes statistical risk measures over hard constraints, focusing on
robustness against uncertainties and disturbances. Liu et al. (2024b)



82 Power System Applications

incorporate Fast Gradient Sign Method (FGSM) attacks into train-
ing, creating an adversarial regime that enhances controller robustness
against such attacks.

Projection-Based Methods These methods ensure safety through
projection operations onto sets of stabilizing controllers, often utilizing
convex optimization techniques. For example, Gu et al. (2022) develop
a projected policy gradient method that enforces stability conditions
through projection onto a convex set of stabilizing parameters, providing
exponential stability guarantees through Lyapunov certificates, with
safety constraints enforced through a projection step formulated as a
semidefinite program.

Multi-Agent Methods Multi-agent approaches address scale by bal-
ancing local control with system stability. Xia et al. (2022) use a two-
phase framework with CTDE. The method employs dual networks: a
safety evaluation network predicting constraint violations and an action
guidance network providing corrective actions. The method implements
both hard constraints for physical limits and soft penalties for eco-
nomic objectives, with a mechanism for selecting safe actions when
violations are predicted. Each microgrid agent operates independently
while meeting system stability requirements. Kwon et al. (2024) extend
the SGDmax algorithm with zero-order policy gradient from (Kwon
et al., 2023) to create a distributed control framework that leverages
coherency information. The key insight is that replacing traditional
generators with grid-forming inverters creates predictable changes in
how generators naturally group together during oscillations. The con-
troller design exploits this by mapping the new coherent groupings after
inverter integration, implementing control actions only between groups,
and targeting inter-area oscillations specifically. This coherency-aware
approach demonstrates better performance than traditional methods
that don’t account for inverter-induced changes in system dynamics.

While each approach has distinct characteristics, there is a clear
trend toward hybrid methods combining traditional control theory with
modern learning techniques.
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Training Approaches

Existing approaches predominantly employ offline training (Cui et al.,
2023; Wan et al., 2023; Kwon et al., 2023), generating and learning
from simulated trajectories before testing. In contrast, Gu et al. (2022)
implement online training with stability-preserving projection steps
during learning. Several methods utilize multi-phase strategies: Xia
et al. (2022) combine centralized offline training with decentralized
execution, while Wan et al. (2023) employ meta-learning with separate
meta-training and adaptation phases to validate safety properties before
testing.

Safety mechanisms during training vary across implementations.
Liu et al. (2024b) embed safety directly into the architecture through
monotonic neural networks, Jin and Lavaei (2020) combine stability
penalties with weight thresholding, and Xia et al. (2022) use a 200-
episode pre-training period for safety models. Continuous safety en-
forcement approaches include Shuai et al. (2024)’s strategic exploration
within Lyapunov-verified safe regions and Gu et al. (2022)’s parameter
projection onto stabilizing controller sets after each gradient step.

Training data generation follows specific constraints: Cui et al. (2023)
use simulated trajectories with tightly controlled parameters (initial
angles between [-0.05, 0.05] rad, frequencies between [-0.1, 0.1] Hz),
Kwon et al. (2023) generate data under varying conditions (£0.5 to £1
pu perturbations), Xia et al. (2022) incorporate real-world measurements
(10 hours of smart meter data), and Yuan et al. (2024) operate within
specific bounds (initial frequencies in [59.9, 60.1] Hz, power variations
of £10%).

6.1.3 Practical Considerations

Communication Requirements Communication architectures range
from minimal local measurements (e.g., frequency and voltage phase
(Shuai et al., 2024; Cui et al., 2023)) to comprehensive state informa-
tion including tie-line flows (Liu et al., 2024b) and neighboring bus
states (Yuan et al., 2024). Inter-area communication spans from fully
decentralized approaches (Xia et al., 2022; Cui et al., 2023) to dis-
tributed architectures requiring structured neighbor communication
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(Kwon et al., 2023; Jin and Lavaei, 2020). Update frequencies vary from
high-frequency 100Hz updates (Kwon et al., 2023) to longer 30-second
intervals (Xia et al., 2022).

Computational Aspects Computational requirements range from
static control laws (Cui et al., 2023) to more demanding approaches
with quadratic programming and Gaussian Process regression (Wan
et al., 2023). Runtime performance spans from 0.01s execution (Xia
et al., 2022) to extended training periods, typically on standard CPU
platforms (Xia et al., 2022; Shuai et al., 2024). Scalability concerns are
addressed through decentralized implementations (Cui et al., 2023) or
distributed cooperation frameworks (Yuan et al., 2024).

Control Architecture and System Modeling Frequency control oper-
ates across hierarchical layers at different timescales. Wan et al. (2023)
explicitly group inertial response and primary control (immediate stabil-
ity mechanisms) into Phase I, with slower secondary/tertiary controls
in Phase II, allowing targeted safety constraints for each phase.
Inverter modeling follows two approaches: grid-forming inverters as
voltage sources with specified magnitude and angle, such as P-w and Q-
V droop control (Kwon et al., 2023), essential for low-inertia grids, and
grid-following inverters as current sources synchronizing with existing
frequency through phase-locked loops (Cui et al., 2023), suitable for
integration into strong grids with substantial synchronous generation.
This modeling distinction is particularly crucial for low-inertia grids
where the choice between grid-forming and grid-following capabilities
significantly influences system stability and control performance. Grid-
forming inverters become increasingly essential in systems with reduced
conventional generation, while grid-following inverters remain suitable
for integration into strong grids with substantial synchronous generation.

Integration Considerations Integration focuses on compatibility and
modification requirements. Methods typically interface with existing
droop control by modifying setpoints rather than replacing controllers
(Cui et al., 2023; Kwon et al., 2023). System modifications range from
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measurement system installations (Xia et al., 2022) to inverter interface
modifications (Cui et al., 2023). Backward compatibility is maintained
by preserving control structures, exemplified by Kwon et al. (2023)’s
retention of basic droop control with a higher-level coordination layer.

Certification requires hardware-in-the-loop simulations and field
trials to verify performance under various disturbances and demon-
strate constraint satisfaction. Compliance with grid codes (e.g., NERC
BAL-003-1, ENTSO-E) requires meeting technical specifications like
frequency restoration within 15 minutes and primary response activation
within 20-52 seconds, alongside mathematical guarantees for constraint
satisfaction.

6.2 Volt-Var Control

High penetration of DERs has made voltage stability and power quality
management increasingly challenging in modern distribution networks.
Traditional deterministic approaches prove inadequate amid growing
uncertainties, motivating the development of safe RL approaches for
VVC (Table 6.2).

Recent research demonstrates diverse approaches in both formulation
and implementation. Model-free methods eliminate the need for accurate
system models while using CMDP for safety constraints (Wang et al.,
2019). Model-augmented approaches enhance learning by leveraging
physical insights, implementing quadratic programming-based constraint
layers (Gao and Yu, 2022). Distributed architectures enable scalable
control through coordinated local actions (Yan et al., 2023; Shi et al.,
2023).

Safety mechanisms range from theoretical guarantees to practical
implementations. Feng et al. (2023) provide global asymptotic stability
through Lyapunov analysis, while Chen et al. (2022) implement physics-
based shielding for battery systems. These frameworks prove crucial
during both learning and deployment phases, with validation results
demonstrating high reliability.

Implementation challenges are evident in test system variations
(Table 6.2). Most methods demonstrate scalability from small IEEE
test feeders to larger networks but differ significantly in communica-
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tion requirements and computational efficiency. For example, Zhang
et al. (2023b) achieve communication-free operation, while Sun et al.
(2024) assume sufficient infrastructure for real-time coordination. Com-
putational performance varies from milliseconds (Feng et al., 2023) to
minutes, highlighting the trade-off between control sophistication and
real-time applicability.

6.2.1 Safe RL Formulation for VVC

State Space State space selection depends on control objectives, avail-
able measurements, system architecture, and controllable device types.
The basic form involves {pal, prat |v|, Zv, X tatus, Xtemp} C 8 € S,
real and P
spectively, |v| and Zv represent voltage magnitudes and phase angles, re-

where P react

represent real and reactive power injections, re-
spectively, Xstatus Tepresents control device states, and Xiemp represents
temporal features. This suits traditional VVC devices where state history
helps limit switching operations. For multi-area control, the formulation
extends to area-specific information through {pffal, Pt o}t C i € S,
where pffal,pffa“ represent outlet powers of k-th area, enabling dis-
tributed control with limited observability (Liu and Wu, 2021). Systems
with renewables can incorporate generation and uncertainty measures

directly (Nguyen and Choi, 2022; Zhang et al., 2023b).

Action Space Action space formulation varies based on controllable
devices. Traditional VVC systems use discrete actions, such as tap/on-
off positions for controllable devices (Wang et al., 2019). Systems with
inverter-based resources use continuous actions, such as reactive power
ratios or set points.

Reward Function The reward function design for VVC incorporates
several operational objectives through distinct terms. Power 1oss pjogs(t) =
>, Wit ;|2 computes the total real power loss across network branches,
with w*s* being the resistance and I; the current magnitude of branch
l. Device switching costs Y, |Axy| prevent excessive device operations,
where Axy, represents the change in device k’s state between consecu-
tive time steps. Voltage regulation — Y, |vr — vref|, maintains voltage
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Table 6.2: Comparison of Safe RL Approaches for VVC

Problem Setup

System Model

Safety Aspects

Test Systems

(Wang et al., 2019): Device wear Model-free implemen- Constrained soft actor- IEEE 4, 34, 123-bus
reduction; Controls voltage regu- tation; Centralized critic; Local optimality feeders; One year Lon-
lators, tap changers, capacitors  architecture guarantees; Voltage viola- don smart meter data
tion prevention

(Liu and Wu, 2021): PV in- Balanced steady-state ~Safe exploration mech- IEEE 33, 141-bus bal-
verters and SVC control; Online model; Communication —anism; Exploration- anced; IEEE 37-bus un-
decentralized framework; Fast- delay; Asynchronous  exploitation balance; balanced; Convergence
timescale operation implementation Voltage limits validation

(Gao and Yu, 2022): Tap
and capacitor control; Model-
augmented RL; Probabilistic
uncertainty handling

DistFlow equations; Prob-
abilistic NN for uncer-
tainty; SCADA/AMI data
required

QP constraint layer; MI
regularizer; Empirical vali-
dation; Iterative QP satis-
faction

IEEE 4, 34, 123-bus
systems; London meter
data

(Feng et al., 2023): Transient
performance focus; DER reac-
tive power control; Decentralized;
Fast violation response

Branch flow model; Linear
approximation; Fast reac-
tive power loop; Balanced
phase assumption

Lyapunov stability anal-
ysis; Global asymptotic
guarantees; Monotonic pol-
icy

IEEE 13, 123-bus
systems; Single/three-
phase versions; Fast

computation (0.37ms)

(Wang et al., 2023b): Multi-
energy microgrid management;
Cost minimization; DG /storage/-
gas control

AC power flow with gas
model; Unknown param-
eters; Price uncertainties;
Power-gas coupling

Physical-informed safety
layer; Voltage/thermal/-
pressure limits

6-bus power, 7-node gas;
33-bus power, 20-node
gas

(Zhang et al., 2023b): VCC and
loss minimization; Smart con-
verter control; Projection-based
safety

Branch power flow model;
Steady-state  operation;
RES uncertainty handling

Projection layer for safety;
Voltage constraints; Zero
violations during training

Modified IEEE 33-bus;
6 PV converters; 8 vari-
able loads; 30-min reso-
lution data

(Yan et al., 2023): Multi-zone
VVC; PV inverter reactive power
control; Decentralized framework

AC power flow; Limited
zone information; Normal
distribution uncertainty

Voltage limits; Primal-
dual optimization; Empiri-
cal safety validation

141-bus system; 9 zones;
Efficient computation
(81ms)

(Sun et al., 2024): Three-phase
unbalance compensation; PV in-
verter coordination

Three-phase unbalanced
model; Simplified voltage
equations

Voltage constraints; Hy-
brid experience replay;
Sensitivity-based guidance

Modified IEEE 123-bus;
42 single-phase PV in-
verters

(Nguyen and Choi, 2022): Three-
stage VVC; Peak reduction;
Voltage regulation; Hierarchical
framework

Full and linear models; Per-
fect communication; Ra-
dial topology; Fast local
measurements

Three-layer safety struc-
ture; Day-ahead stability;
Real-time adjustments

IEEE 33, 123-bus sys-
tems; Multi-timescale
validation

(Chen et al., 2022): Active volt-
age control; BESS safety focus;
Power congestion management;
Decentralized execution

Steady-state balanced

model; Control at PV
buses; Gaussian uncer-
tainty

Physics-based shield mech-
anism; SoC protection;
Voltage limits

IEEE 33, 141-bus sys-
tems; Three-year Por-
tuguese data; Three-
minute control period

(Shi et al., 2023): Active voltage
control; Loss minimization; PV
inverter coordination; CTDE

Nonlinear AC power flow;
Steady-state model; Mea-
surement uncertainty

Data-driven safety layer;
Action correction mecha-
nism; First-order approx-
imation guarantees

33-bus (6 PVs), 141-bus
(22 PVs), 322-bus (38
PVs); Three years real-
world data

(Guo et al., 2023): High PV pen-
etration; Multi-agent decentral-
ized control

Full AC power flow; Sec-
ond order cone model;
Branch flow constraints

Safety projection; State
synchronization block;
Delay-robust operation

IEEE 33-bus system; 15-
min resolution

(Jeon et al, 2023): Multi-
objective VVC; EV charging
support; MESS coordination

DistFlow equations; ZIP
load model; Coupled trans-
portation network

SOC/Voltage safety mod-
ules; Iterative violation
correction; Plug-and-play

IEEE 33- and 57-bus
with 15- and 42-node
transport

profiles, where v is the voltage magnitude at bus k, and vt is the

reference voltage (typically 1.0 p.u.). Economic formulations incorporate

time-varying electricity prices through ¢(t), modifying the loss term to
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—c(t)pioss(t). Systems with renewable integration often include reactive

power utilization costs — > [pieact].

Safety Constraints Safety constraints in VVC primarily focus on
maintaining voltage stability. The fundamental constraint vy < |vg| <
Umax ensures voltage magnitudes remain within acceptable bounds,
typically vpin = 0.95 p.u. and vypax = 1.05 p.u. Equipment constraints
react

include apparent power limits and ramp rate limitations |Ap;*“*| <

Apze%fw to prevent rapid changes in reactive power output.

Performance Evaluation Metrics Technical performance is measured
by power loss reduction Apj.es relative to baseline operation, voltage
profile improvement representing the standard deviation of voltage
magnitudes, and control action count tracking device operations. Safety
compliance is evaluated through constraint violation frequency and
maximum deviation magnitude maxy |vy — vref|. Learning efficiency
metrics assess convergence rate, sample efficiency, and average decision
time.

Three-Phase Considerations Three-phase VVC extends single-phase
control by addressing phase imbalances and interactions. The methods
generally follow two strategies: integrated three-phase modeling and
phase-decoupled control. Integrated modeling (e.g., (Sun et al., 2024))
incorporates phases in state-action spaces through phase-specific power
injections, loads, and voltages, with phase-wise reactive power control.
Three-phase voltage sensitivity matrices capture cross-phase effects,
while Voltage Unbalance Factor (VUF) constraints manage imbalances.
Phase coupling through impedance matrices enables coordinated control.
Phase-decoupled control (e.g., (Feng et al., 2023)) treats phases sep-
arately using diagonal control structures that preserve monotonicity per
phase. States can be arranged by bus or phase, with independent con-
trollers operating under system-wide stability conditions. This reduces
computational complexity while retaining control effectiveness.
Performance evaluation focuses on voltage profile improvement
across phases, reduction in phase imbalance, and control efficiency.
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6.2.2 Safe RL Techniques for VVC

SAC-Based Methods These methods adapt SAC to incorporate safety
constraints, leveraging maximum entropy principles and off-policy train-
ing for voltage control challenges. The core elements include dual critics
for value estimation, entropy tuning, and various mechanisms for con-
straint satisfaction (see Sec. 2.1.3 for technical details). Wang et al.
(2019) formulate VVC as a CMDP through CSAC, using Lagrangian
multipliers for voltage constraints and dual gradient descent for pol-
icy updates. Sun et al. (2024) implement a voltage sensitivity-based
intervention module with a hybrid experience replay buffer storing
both safe and unsafe transitions. Nguyen and Choi (2022) develop a
safety module using iterative voltage control equation ay (i + 1) =
ap () + p(a?ge"t — ak(i)), essentially a safe gradient-based update
between the RL agent’s desired reactive power output (a?ﬁe”t) and the
current reactive power injection (a; (7)) at node j, time ¢, and iteration
1. The adaptive parameter p modulates the update speed based on
voltage proximity to limits—it increases when voltages are well within
bounds (allowing faster convergence to agent’s action) and decreases as
voltages approach limits (enforcing more conservative updates). Jeon
et al. (2023) implement dual safety modules for SOC and voltage con-
straints, using adaptive parameters that increase correction strength

when approaching constraint boundaries.

RTA-Based Methods RTA methods provide real-time safety guar-
antees through optimization-based action modification or monitoring-
based intervention, working independently or with learning algorithms
such as SAC (Nguyen and Choi, 2022; Jeon et al., 2023). Gao and Yu
(2022) implement a QP-based safety layer minimizing deviation from the
learned policy while ensuring voltage constraints. Zhang et al. (2023c)
propose DNN Projection embedded twin-delayed deep deterministic
policy gradient (DPe-TD3), integrating a finite iteration projection
algorithm for hard constraints and a DNN-assisted projection layer for
computational efficiency. Shi et al. (2023) develop a centralized safety
layer using first-order voltage predictions for efficient action correction.
Wang et al. (2023b) integrate security assessment with PPO, solving
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min ||a;®® — aP?°||? subject to probabilistic security constraints, where
actions are modified to maintain system security while minimizing

deviation from the PPO policy.

Multi-Agent Methods Multi-agent methods enable coordinated volt-
age control while maintaining system-wide safety constraints, using
either projection-based mechanisms or explicit constraint formulations.
Liu and Wu (2021) extend SAC to multi-agent settings through MAC-
SAC, using constrained Markov games with individual agent constraints
on voltage expectations. Zhang et al. (2023b) implement MADDPG with
projection within each agent’s actor network to ensure feasible actions.
Yan et al. (2023) use GCNs for network-aware feature extraction and
primal-dual optimization for constraint satisfaction in a decentralized
framework. Chen et al. (2022) implement MATD3 with physics-based
shields modifying actions according to power system constraints and
battery characteristics. Guo et al. (2023) implement an analytical safety
projection layer based on branch power flow models, which minimizes
control adjustment subject to explicit voltage constraints and thermal
limits. Kabir et al. (2023) propose a hierarchical two-timescale approach
using MASAC for slow-timescale conventional devices and DDPG for
fast-timescale smart inverter control, demonstrating how CTDE can
address non-stationarity in two-timescale voltage control.

Training Approaches

Training approaches in safe RL for VVC reflect key power system
considerations. Online versus offline training choices stem from voltage
stability requirements during learning. Wang et al. (2019) and Sun
et al. (2024) use offline training, while Liu and Wu (2021) and Yan
et al. (2023) implement online learning with constraint handling through
dual variable updates and primal-dual optimization. For MARL, CTDE
addresses the trade-off between coordinated control and communication
constraints (Zhang et al., 2023b; Guo et al., 2023; Shi et al., 2023),
enabling coordinated policy learning through shared experience while
allowing real-time control using local measurements.

Data requirements address power system characteristics, typically
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spanning 1-3 years of load profiles with 1-15 minute resolution. Chen
et al. (2022) and Zhang et al. (2023c) augment real data with synthetic
samples by adding Gaussian noise to PV generation and load profiles.
Experience collection strategies differ—Sun et al. (2024) and Guo et al.
(2023) store both safe and unsafe transitions in hybrid buffers, while Gao
and Yu (2022) train only on projected safe actions. Hu et al. (2022b)
address sample efficiency through Experience Augmentation, exploiting
distribution system symmetry to generate synthetic training data while
accelerating convergence toward safe voltage control policies.

6.2.3 Practical Considerations

Control Architecture Evolution Multi-layered control structures bal-
ance system-wide optimization with local responsiveness. Nguyen and
Choi (2022) implement a three-stage framework coordinating day-ahead,
real-time, and local timescales. Yan et al. (2023) examine zone-based ar-
chitectures established in European networks, while Zhang et al. (2023b)
introduce system partitioning using sensitivity matrices and spectral
clustering to reduce subsystem coupling.

Resource Integration and Coordination VVC systems coordinate
diverse grid technologies with varying characteristics. Liu and Wu (2021)
examine inverter-based resources providing support using free capacity,
while Jeon et al. (2023) analyze mobile energy storage integration
considering both power system and transportation constraints. Chen
et al. (2022) demonstrate joint active-reactive power control effectiveness
due to distribution system X /R ratio characteristics. Wang et al. (2023b)
examine integrated management of power and gas networks through
gas-fired generators as coupling points, enabling coordinated dispatch
while considering physical constraints of both networks.

Model Uncertainty and Data Management Control approaches adapt
to handle model uncertainty and data requirements. Wang et al. (2019)
note utilities’” challenges in maintaining network models across millions
of buses. Gao and Yu (2022) develop data-driven methods maintaining
safety guarantees without requiring precise parameters.



92 Power System Applications

Operational Challenges VVC systems address several implementation
challenges. Communication delays are managed through state synchro-
nization using prediction models (ARIMA (Guo et al., 2023)) and
neighboring bus voltage averaging (Zhang et al., 2023b). Feng et al.
(2023) focus on rapid voltage recovery during disturbances, while Zhang
et al. (2023c) examine fast voltage fluctuations from renewables and
computational efficiency through DNN projection.

6.3 Optimal Power Flow

OPF determines a power system’s optimal operating point by minimiz-
ing costs while satisfying power flow equations and operational con-
straints. Several variants address modern power system needs: Security-
Constrained OPF (SCOPF) ensures system security under contingencies
(Yan and Xu, 2022; Hu et al., 2024), distribution OPF handles voltage
regulation with distributed resources (Li and He, 2022), and microgrid
OPF manages local resources while maintaining grid interactions (Zhang
et al., 2020b; Yu et al., 2024).

These variants share common challenges: AC power flow equations
introduce non-convexity making large-scale systems computationally
intensive, network constraints must be satisfied at each time step, and en-
ergy storage introduces temporal coupling, transforming static OPF into
dynamic optimization. Modern power systems add complexity through
renewable generation uncertainty requiring probabilistic constraints,
fast-changing grid conditions necessitating real-time solutions, and dis-
tributed energy resources adding local optimization objectives. Table
6.3 shows how learning-based methods address these challenges, par-
ticularly focusing on uncertainty handling and operational constraints
while maintaining computational efficiency.

Table 6.3 reveals evolution in problem formulation and solution
approaches.! Traditional centralized OPF has expanded to distributed

!The Problem Setup column presents optimization formulation using state space
(S), action space (A), and time resolution (T), with components including Microgrids
(MGs), Diesel Generators (DG), Energy Storage Systems (ESS), and problems such
as SCOPF and Economic Dispatch (SCED). System Model describes network repre-
sentations as AC or DC power flow, included components, and uncertainty modeling
approaches. Safety Considerations outlines constraint enforcement methods including
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Table 6.3: Comparison of Safe RL Approaches for OPF and Related Problems

Problem Setup

System Model

Safety Considerations

Test Systems

(Zhang et al., 2020b): Networked
MGs; S: load/solar forecast; A:
DG/ESS/power transfer; T: 15-
min; Distributed multi-agent

AC power flow; Comp:
DG/ESS/PV /loads; Un-
cert: Beta/Gaussian dist;
Fixed topology; Smart me-
ter data

Voltage/current  limits;
DG/ESS/PV limits; Gra-
dient +  backtracking;
Implicit PF

33-bus dist. net (5 MGs);
Each MG: IEEE 13-bus;
Time: 1.4s/agent vs 145.5s
central; Vs: DQN, U-PL

(Li and He, 2022): Dist. net oper-
ation; S: power/storage/price; A:
caps/taps/DG/ESS; T: 1h

Net: Black-box; Comp:
Full AC dist; Uncert:
Ren/load/price; CAISO

Voltage/current /PF limits;
Method: CPO; Guarantee:
Monotonic; Online safety

IEEE-34/123-node; Data:
2018-20; Vs: DDPG/P-
PO/SAC

(Yan and Xu, 2022): SCOPF; S:
P/Q loads; A: V/P control; T:
Real-time; Security focus

Net: Full AC; Comp:
Gen/loads; Uncert: Load
(5%); Steady state

PF/gen/voltage  limits;
Method: Lagrange-IP;
KKT guarantee; RT safe

IEEE  57/300/2000-bus;
99.9% faster; Matches
IPOPT quality

(Hu et al., 2024): RT-SCED; S:
node/gen/SOC; A: 29-dim gen;
T: 5-min; Storage focus

Net: DC; Comp: Ther-
mal/wind/PV/ESS; Un-
cert: Load 2%, ren 5%

Network/gen/ESS  limits;
Method:  Safety layer;
Time-coupling safe; 21ms

IEEE 39-bus (30 units);
118-bus test; Vs: PF meth-
ods

(Yu et al., 2024): Tie-line smooth;
S: temp/power; A: chiller flow; T:

Net: DC/AC  hybrid;
Comp: Cooling system;

Temp/flow limits; Method:
CVaR; Risk-bounded; Self-

Zhuhai DCS  144MW;
0.03s solve; Vs: CPO/SAC

N/A; Cooling Uncert: PV /cooling load adaptive

architectures for microgrid coordination, system modeling ranges from
classical AC power flow to data-driven approaches, and safety mech-
anisms have developed from simple penalty methods to constrained
optimization frameworks.

6.3.1 Safe RL Techniques for OPF and Related Problems

Constraint-Based Optimization Methods The core mechanism trans-
forms constrained reinforcement learning into constrained policy search,
with direct encoding of system limitations in the optimization objec-
tive (see Sec. 2.1.1 for technical details). Li and He (2022) address
distribution network operation through CPO, formulating operational
constraints for substation capacity, nodal voltages, branch loading, and
power factor. Their approach handles network operational limits without
penalty coefficient tuning, processes distribution operations as a black
box, and accommodates mixed discrete and continuous actions. Zhang
et al. (2020b) transform the problem into a quadratically constrained

Constrained Policy Optimization (CPO), Model Predictive Control (MPC), Interior
Point methods (IP), and Conditional Value at Risk (CVaR), with theoretical guaran-
tees through Karush-Kuhn-Tucker (KKT) conditions or Mixed Integer Programming
(MIP). Test Systems describes validation frameworks using IEEE test systems or real
systems like District Cooling Systems (DCS), with benchmark comparisons including
DDPG, PPO, SAC, DQN, and Unconstrained Policy Learning (U-PL).
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linear program, incorporating AC power flow equations to calculate
gradient factors and using a backtracking mechanism with coefficient
multipliers for marginally violated constraints. Both methods eliminate
penalty coefficient tuning through different mathematical frameworks.

Primal-Dual Methods Primal-Dual Methods apply Lagrangian re-
laxation principles to handle constraints in RL (Sec. 2.1.2). Yan and
Xu (2022) combine primal-dual deep deterministic policy gradient (PD-
DDPG) with classic SCOPF models, incorporating pre-contingency and
post-contingency constraints through Lagrangian formulation. Their
approach approximates actor gradients by solving Karush-Kuhn-Tucker
conditions of the Lagrangian rather than constructing reward and cost
critic networks through environmental interactions, enabling faster
SCOPF solutions while maintaining contingency handling capabilities.

Risk-Aware Methods Risk-Aware Methods incorporate probabilistic
risk measures into the reinforcement learning framework. The approach
centers on CVaR, which provides a systematic way to measure and
control the risk of constraint violations. Risk-aware Soft Actor-Critic
(RSAC) (Yu et al., 2024) implements a CVaR-based CMDP formulation
to smooth tie-line power fluctuations in grid-connected microgrids with
high renewable penetration. Their method employs a district cooling
system as a controllable load, incorporating states such as time, tem-
peratures, and power targets while using chiller mass flow rate as the
action variable. This approach enables risk quantification and parameter
tuning through Gaussian distribution assumptions to address complex
thermal dynamics that challenge precise model-based control.

Safety Filter Architectures Safety Filter as an RTA architecture
involves projection of potentially unsafe actions onto feasible action
spaces through optimization-based safety layers. Hu et al. (2024) ad-
dress real-time security constrained economic dispatch (RT-SCED) with
energy storage by combining safety exploration (via a safety layer) and
safety optimization (via CMDP). Their dual approach projects unsafe
actions onto feasible spaces through optimization-based safety layers for
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single-step constraints while using CMDP formulation for time-coupling
constraints, ensuring comprehensive constraint satisfaction.

Training Approaches

Offline training dominates OPF applications due to operational re-
quirements. Zhang et al. (2020b) process historical smart meter data
at 15-minute intervals, while Yan and Xu (2022) implement a two-
stage process combining supervised initialization with policy refinement.
Training incorporates power flow solutions to verify network feasibility,
with specific handling of voltage limits and line flow constraints.

Training data sources include historical operational data providing
real system behaviors, demonstrated by Li and He (2022)’s use of
CAISO market data for distribution optimization, and Monte Carlo
simulation generating synthetic scenarios through uncertainty sampling,
as in Yan and Xu (2022)’s SCOPF solution with Gaussian-distributed
loads. Data resolution directly impacts policy capability to handle
temporal dependencies.

OPF exploration mechanisms must maintain both power flow feasibil-
ity and operational constraints. Li and He (2022) implement constraint-
aware updates through trust region methods in their CPO framework,
while projection-based approaches map actions to feasible regions de-
fined by power flow constraints. Hu et al. (2024) demonstrate this
through a safety layer handling both immediate limits and time-coupling
constraints in storage dispatch.

Verification focuses on power system operational metrics, monitoring
power flow constraint satisfaction including voltage bounds and thermal
limits. Li and He (2022) quantify constraint violations across operating
conditions, while Hu et al. (2024) verify both immediate and time-
coupled constraints for storage operation. Verification addresses normal
conditions and contingency scenarios for SCOPF problems.

6.3.2 Key Findings and Trends

Multi-timescale Multi-source Coordination Temporal coupling from
energy storage and renewables requires propagation of safety guarantees
across timescales. Safety frameworks must coordinate fast-responding
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electronic resources with slower mechanical devices while handling time-
coupled constraints such as SoC limits (Hu et al., 2024). The interaction
between conventional devices and distributed resources introduces cou-
pling in safety constraints (Li and He, 2022), requiring frameworks to
handle both resource-specific operational limits and system-level con-
straints while coordinating storage, distributed generation, and flexible
loads (Yu et al., 2024).

System Security and Constraints Non-convex power flow equations
and N-K security requirements create sparse constraint structures ex-
ploitable in RL architecture. Independence of contingency scenarios
enables efficient decomposition of safety verification (Yan and Xu, 2022),
while safety layers must handle both equality constraints from power
flows and inequality constraints from operational limits. Combinatorial
security constraints require state space designs capturing essential safety
information while remaining computationally tractable, with sparse
matrix formulations and independent contingency handling providing
mechanisms for scaling safety guarantees (Yan and Xu, 2022).

6.4 Demand-Side Management (DSM)

DSM enables grid operators to maintain stability and efficiency by
actively controlling energy consumption patterns across building energy
management (Khattar and Jin, 2023), district cooling systems (Yu et al.,
2023), energy hubs (Qiu et al., 2022), and coordinated storage control
(Paesschesoone et al., 2024). DSM applications optimize energy con-
sumption while satisfying operational constraints and maintaining user
comfort under uncertainties from renewable generation, user behavior,
and market conditions.

Key challenges making DSM suitable for safe RL include balancing
competing objectives (cost minimization, emission reduction, comfort
maintenance, grid services provision), managing complex dynamics
across timescales (from real-time temperature control to day-ahead
storage scheduling), and operating under strict constraints (power bal-
ance, equipment limitations, user comfort) while handling substantial
uncertainties.
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Table 6.4 shows recent research approaches varying in problem scope
from single buildings to district-level systems and multi-carrier energy
hubs. Safety mechanisms differ significantly—some employ explicit safety
layers or MPC-based filters guaranteeing constraint satisfaction, while
others incorporate safety through guided policy learning or constraint-
aware optimization.

Emerging trends in safe RL for DSM include growing focus on multi-
agent architectures addressing distributed energy systems (Khattar
and Jin, 2023; Zhang et al., 2024a), increasing incorporation of explicit
uncertainty handling through prediction modules or robust formulations
(Hong and Lee, 2023), and progression toward theoretical safety guaran-
tees during both training and deployment beyond simple penalty-based
approaches.

6.4.1 Safe RL Techniques for DMS

Constrained Policy Method Constrained policy learning directly incor-
porates safety into policy updates, offering better sample efficiency and
scalability. Zhang et al. (2024a) develop Consensus Multi-Agent Con-
strained Policy Optimization (CMACPO), extending CPO to networked
multi-agent settings. Their approach achieves system-wide emission tar-
gets without centralizing sensitive load information, demonstrating
improved convergence compared to traditional distributed optimization
approaches and strong potential for large-scale deployment.

Penalty Method Hong and Lee (2023) employ a modified DQN with
integrated penalty mechanisms for safety violations. Their approach uses
theoretically-derived penalty costs ensuring desired safety properties,
making soft constraints effectively behave like hard constraints under
optimal policy execution. The method exploits short-horizon uncertainty
forecasts to achieve robustness and cost-efficiency.

Optimization-Based Methods Optimization-based methods use ex-
plicit mathematical programming to handle constraints, offering guar-
anteed feasibility and clear interpretability, though often at higher
computational cost.



98

Power System Applications

Table 6.4: Comparison of Safe RL Approaches for Demand Side Management

Problem Setup

System Model

Safety Considerations

Test Systems

(Qiu et al., 2022): Multi-energy
hub management; S: storage,
prices, demand; A: equipment
scheduling. Centralized control
with hourly timesteps.

CHP, thermal/hydrogen
storage, heat pump, and
renewables. Explicit mod-
eling of demand and renew-
able uncertainties.

Safety-guided network ad-
justs policy to avoid con-
straint violations. Provides
safety guarantees during
training and deployment.

UK National Grid dataset
with 61 test days. Com-
pared against MILP and
LSTM-MPC benchmarks.

(Shengren et al., 2023): Dis-
tributed energy resource schedul-
ing; S: PV, load, DG genera-
tion, and storage SOC. Central-
ized hourly control for day-ahead
scheduling.

Simplified power balance
model with DERs (PV,
storage, DGs). Quadratic
DG cost functions. Han-
dles renewable and load un-
certainties.

MIP enforces constraints.
Penalty terms in reward
during training. Power bal-
ance, generation limits,
ramping and storage con-
straints.

One year of demand
and PV data. Three DG
units and ESS system.
Compared against DDPG,
TD3, PPO.

resoone et al., 2024): PV-
load system control with
states including battery SOC, de-
mand, solar power, and prices. 15-
minute control intervals.

Grid-connected — system

with  specified battery
characteristics. ~ Models
solar, consumption and

price uncertainties.

Data-driven MPC safety
filter. Battery SOC and
power limits enforced.

Validated on Flanders
2021-2022 data. Compared
against PPO, TRPO,
QR-DQN, DDPG.

(Khattar and Jin, 2023): Building
energy management with 30-dim
state space and 3 continuous ac-
tions per building. Decentralized
hourly control.

Blackbox building with
heat pumps and multiple
energy forms. Handles en-
vironmental and load un-
certainties.

Energy balance, technol-
ogy constraints, and SOC
bounds. Theoretical con-
vergence guarantees of
adaptive optimization.

CityLearn Challenge (1st
place winner). 4-ye
ulation compared against
SAC, A2C, DDPG, DQN,
PPO, TD3.

sim-

(Hong and Lee, 2023): Energy
management with inconsistent
supply. States include battery
level, demand, generation, prices.
Hourly operation.

Energy storage system
with defined capacity lim-
its. Models prediction un-
certainty as Gaussian ran-
dom variable.

Theoretical guarantee
through (p,q)-failure
condition. Penalty cost

for failures. Safe RL with
short-horizon forecasts.

Korean power company
dataset (2017). Compared
against DQN, PER, LR-
DQN.

(Zhang et al., 2024a): Bi-level
optimization for low-carbon de-
mand management. Distributed
multi-agent control with privacy
preservation.

AC power flow with
second-order cone relax-
ation. Models renewable,
load, and carbon emission
uncertainties.

Generator limits, voltage
bounds, line flow lim-
its. Carbon emission con-
straints. CPO with trust
region updates.

Modified IEEE 33-bus and
123-bus systems. Com-
pared against PPO, CPO,
MACPO.

(Yu et al., 2023): District cooling
system control for operating re-
serve. States include power gap,
flow rates, temperatures. Central-
ized 15-minute control.

Thermodynamic  model
with chiller, heat ex-
changer, building com-
ponents. Occupancy
uncertainties.

Safe layer projects unsafe
actions using LP. Power,
flow rate, and temperature
comfort bounds enforced.

Real DCS in Henggin,
China (144 MW). Com-
pared against PI con-
troller, MPC, conventional
DDPG.

(Hou et al., 2024): Energy stor-
age dispatch; States: Node power
levels, ele. prices, SOCs; Actions:
Battery charging/discharging de-
cisions; Centralized control

AC power flow distribution
system; Uncertain solar
generation/demand /ele.
prices; Linear battery
dynamics

Constraints: Voltage lev-
els, battery charge limits,
power flow bounds; Mixed-
integer programming inte-
gration with DRL

Modified IEEE 34-node
network; Implementation:
Open-source code avail-
able

Shengren et al. (2023) address optimal DER scheduling in renewable-
based systems while enforcing operational constraints. Their approach
trains a DQN offline to approximate the action-value function Q(s,a)
done offline using standard DRL techniques (e.g., experience replay,
target network). Once training is complete, the learned Q-network is
used for action selection by solving max, Q(s,a) subject to constraints
on actions, where (s, a) is represented as a set of mixed-integer con-
straints. While ensuring constraint satisfaction, this approach incurs
higher computational complexity and depends on Q-function approxi-
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mation quality.

(Khattar and Jin, 2023) adopts a different approach using adaptive
optimization with evolutionary search under trajectory-based guidance.
The core technique uses solution functions of optimization (c.f. ?? for
an in-depth discussion of this object) as policies while adapting the
parameters of the optimization model from online observations. Safety
constraints are incorporated through a two-level structure: 1) Upper
level: Evolutionary search to optimize policy parameters; and 2) Lower
level: Convex optimization to compute actions while respecting opera-
tional constraints. The method placed first in the CityLearn Challenge
without pre-training (Nagy et al., 2021), demonstrating strong abil-
ity to handle multi-building coordination while maintaining individual
building constraints.

Safety Filter Methods Safety filter approaches separate safety mech-
anisms from learning, enabling real-time intervention and modularity.
Paesschesoone et al. (2024) combine MPC filtering with changepoint
detection for dynamic power system conditions, implementing continu-
ous model adaptation and policy updates triggered by detected changes.
Yu et al. (2023) design safety layers for district cooling systems using
linear programming to maintain power caps while balancing thermal
comfort.Their method’s efficient handling of coupled thermal-electric
constraints while maintaining real-time performance is notable. Qiu
et al. (2022) develop LSTM-SDDPG (Long Short-Term Memory-Safe
Deep Deterministic Policy Gradient) combining LSTM for uncertainty
handling, DDPG for continuous control, and safety-guided networks for
constraint satisfaction, effectively managing uncertainty across different
energy carriers (electricity, heat, and gas networks) while maintaining
operational constraints.

6.4.2 Key Findings and Trends

Multi-resource and Multi-timescale Coordination The integration of
multiple energy carriers has emerged as a key strategy for enhancing
system flexibility. Qiu et al. (2022) and Khattar and Jin (2023) demon-
strate how multi-energy systems leverage different carriers to manage
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renewable variability effectively. Hong and Lee (2023) address tempo-
ral coordination by incorporating both immediate time-of-use pricing
and longer-term demand charges, balancing short-term operations with
longer-term objectives—essential for practical DSM implementation.

Balance between Simplicity with Decision-Focused Models Khattar
and Jin (2023) demonstrate that simple predictive models (2-week
moving averages) combined with adaptive optimization strategies can
be sufficient, challenging assumptions that increasingly complex models
are always necessary. Forecasts must be adapted to their downstream
decision usage, finding appropriate complexity levels ensuring reliable
operation while maintaining implementability.

Operational Safety and Constraint Satisfaction Safety constraints are
fundamental for real-world adoption (Shengren et al., 2023), particularly
challenging in nonstationary environments where changepoint detection
may be employed (Paesschesoone et al., 2024). Yu et al. (2023) introduce
specialized self-adaptive methods managing recovery processes and
preventing rebound peaks in district cooling systems, while Zhang et al.
(2024a) extend safety considerations to include environmental impacts
through nodal carbon intensity management.

6.5 Critical Load Restoration

CLR strategically re-energizes critical loads following outages while
maintaining operational constraints and maximizing system resilience.
Modern distribution networks face increased complexity due to DER
integration, multiple microgrids, complex ownership structures, extreme
weather events, and intermittent renewable resources, making efficient
CLR strategies essential for grid reliability and minimizing outage
impacts.

CLR encompasses post-fault service restoration, microgrid forma-
tion, DER dispatch optimization, and network reconfiguration. The
process must address cold load pickup effects, load prioritization, DER
uncertainty, and dynamic resource availability. Networked microgrids
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with mixed ownership environments further complicate the problem by
necessitating distributed decision-making frameworks.

Key technical challenges in CLR include: (1) the combinatorial
nature of switching operations leading to exponential growth in the
action space, (2) the need for fast decision-making under uncertainty,
particularly with renewable DER integration, (3) maintaining system
stability and operational constraints during the restoration process,
and (4) coordinating multiple resources and stakeholders while ensuring
both local and system-wide objectives are met.

Table 6.5 summarizes recent approaches. Action space complexity so-
lutions include action masking (Vu et al., 2023), end-to-end acceleration
(Wang et al., 2023d), and efficient binary switching representations (Ja-
cob et al., 2024). DER uncertainty handling employs memory-enhanced
design with capacity predictions (Fan et al., 2024), meta-learning (Ab-
deen et al., 2024), and explicit probabilistic models (Si et al., 2024).
System stability is maintained through episode termination and reward
shaping, while multi-resource coordination uses distributed multiagent
control (Vu et al., 2023; Si et al., 2024).

Methods vary in model detail from linearized approximations to
detailed three-phase unbalanced representations, reflecting trade-offs
between computational efficiency and accuracy. Unique considerations
include cold load pickup effects (Wang et al., 2023d), dynamic microgrid
boundaries (Si et al., 2024), and restoration sequence constraints (Li
and Wu, 2024). Successful CLR implementations require balancing
modeling fidelity, computational tractability, and practical operational
requirements.

6.5.1 Safe RL Techniques for CLR

Reward Shaping Methods Reward shaping approaches modify the
reward function to incorporate safety penalty without enforcing hard
constraints. Du and Wu (2022) employ a two-stage framework using
expert demonstrations for safe initial policies before online learning.
Their method enforces DG and ES limits through action clipping while
managing power balance and voltage constraints via reward shaping.
Jacob et al. (2024) introduce a structured reward combining total energy
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Table 6.5: Comparison of Approaches for Critical Load Restoration

Problem Setup

System Model

Safety Aspects

Test Systems

(Du and Wu, 2022): Service
restoration in islanded mi-
crogrids. Expert demonstra-
tions for pre-training.

Linearized Dist-
Flow equations.
DER uncertainties.

Voltage/power flow
constraints. Action
clipping, reward
shaping.

IEEE 123-node.
ERCOT load data.
Hourly power im-
balance percentage.

(Wang et al., 2023d): Se-
quential restoration with
cold load pickup. Binary
component status.

Linearized power
flow. Multi-period.
Full observability.

Flow, voltage, gen-
erator limits. Radi-
ality. Good-Turing
bounds.

IEEE 33/123-
bus, 1069-bus. vs.
Gurobi.

(Vu et al., 2023): Priority-
weighted load restoration in
networked microgrids. Dis-
tributed multi-agent con-
trol for mixed ownership en-
vironments.

OpenDSS-based
power flow. Net-
worked microgrid
topology. Cold load
pickup effects.

Power balance, volt-
age limits, genera-
tor bounds via in-
valid action mask-
ing.

IEEE 13/123/8500-
node systems.

(Fan et al., 2024): POMDP
max. weighted load restora-
tion. A: breaker states,
restoration levels.

Three-phase unbal-
anced model. DER
uncertainties.

Power flow, voltage
bounds. Episode
termination for
constraint breach.

IEEE 123-bus (15
nodes). 7-day DER
forecasts. vs. DQN,
DDPG, SAC.

(Abdeen et al., 2024): MDP
with renewable forecasts,
load levels, battery SOC.
Actions control DER out-
puts.

Three-phase model.
Stochastic renew-
ables. Constant
load during outage.

limits.
bounds
fuel.

Voltage
DER
on storage,
Regret bounds.

IEEE-13 bus (15
loads, 4 DERs). 27
scenarios. vs. warm-
start and ES-RL.

(Jacob et al., 2024): MDP
for reconfiguration and load
shedding. S: node/edge
variables, topology. Binary
switching actions.

Three-phase unbal-
anced model. Grid-

forming/feeding
DERs. Rand.
outages.

Voltage/power flow
limits. Switch mask-
ing.

IEEE 13/34/123-
bus. ms-scale tests.
vs. MISOCP. En-
ergy served, voltage
regulation.

(Si et al., 2024): POSG with
PV, load, switch agents. S:
voltage, line loading, switch
status. CTDE.

Power flow with ra-
dial topology. PV
uncertainty. Single
switch per step.

Action  masking
(power, topology).
Reward shaping.

IEEE 123-node. vs.
VDN and model-
driven OPT.

(Khattar et al., 2025): CLR
under uncertain topology
changes. Hierarchical struc-
ture with cell-level and co-
ordinating agents.

Distribution
with

topology.
approach.

grid
dynamic
CTDE

Topology-
dependent action
masks. Power flow
and  operational
constraints.

IEEE 123-bus with
tie/sectionalizer
switches.  Topol-
ogy  contingency
scenarios.

supplied to loads (Egypp) with voltage violation penalties (V) for
three-phase measurements across all buses, implemented as r(s,a) =
Esupp — Vwior when power flow converges, and zero otherwise. Graph
Capsule neural networks are used to capture node properties and edge
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information for network reconfiguration decisions. Li and Wu (2024)
enhance DQN with Artificial Potential Fields addressing sparse reward
problems, while Abdeen et al. (2024) develop First-Order Meta-based RL
with Evolution-Strategy RL to avoid computationally expensive second-
order derivatives. Fan et al. (2024) combine spatial and temporal features
in their Recurrent Graph Soft Actor-Critic, using episode termination
for severe violations alongside reward penalties for minor constraint
breaches.

Safety Filter Methods Wang et al. (2023c) introduce MT-PIPPO
(Multi-Task Physics-Informed Proximal Policy Optimization) combining
PPO-based MARL, multi-task learning for different network topologies,
and two-stage safety verification. Their approach checks energy dispatch
feasibility using physics-informed constraints, then applies correction
optimization to find the nearest feasible action when violations occur.
Wang et al. (2023d) develop an end-to-end framework combining deep
learning with MILP, where ML predicts binary variables and binding
constraints to transform complex MILP into simpler LP problems while
maintaining safety through explicit optimization constraints.

Action Masking Action masking enforces safety constraints by ex-
plicitly preventing unsafe actions before they can be selected (Si et
al., 2024; Vu et al., 2023). The technique introduces a binary mask
my € 0,141 at each timestep ¢, where m; [a] = 0 indicates invalid actions
and m¢[a] = 1 denotes valid actions. The masked Q-values are computed
as Qmasked (St, @) = Q(s¢,a) -myla] — M - (1 —my[a]), where M is a large
negative value (typically 1e8). This implementation ensures invalid
actions have negligible selection probability during both exploitation
and exploration phases, effectively reducing the action space from 2/4l
to only valid actions. For multi-agent settings (Vu et al., 2023), when
agents propose joint actions, the system checks for constraint violations.
If violations occur, a random agent is selected to modify its action,
with its highest Q-value action masked. This process continues until a
valid joint action set is identified. The action masking technique demon-
strates significant scalability, with (Vu et al., 2023) showing successful
implementation on systems ranging from 13 to 8500 nodes. The method
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improves learning efficiency by constraining the feasible action space and
preventing exploration of invalid actions, leading to faster convergence
to feasible strategies.

Multi-Agent Methods MARL addresses power network spatial distri-
bution by treating network components as individual agents, combining
with reward shaping (Fan et al., 2023a; Si et al., 2024), safety filters
(Wang et al., 2023c), and action masking (Si et al., 2024; Vu et al., 2023;
Khattar et al., 2025) to ensure safety requirements.

Fan et al. (2023a) implement graph-based attention where agents
coordinate through self-attention while maintaining individual decision
capabilities, using CTDE and graph convolutional networks that balance
local information with global network topology. Si et al. (2024) develop
Dynamic Agent Network architecture with QMIX allowing arbitrary-
sized neighboring agent coordination, where attention mechanisms learn
importance weights for interactive agents—particularly for dynamic
microgrid boundaries.

Wang et al. (2023c) combine multi-agent coordination with physics-
informed safety verification through MT-PIPPO, using Dec-POMDP
framework with local observation spaces and shared reward functions
alongside physics-based safety filters. Vu et al. (2023) integrate ac-
tion masking with multi-agent Deep Q-Learning, sharing invalid action
information while using OpenDSS simulation for constraint verifica-
tion. Khattar et al. (2025) address uncertain topology changes through
hierarchical MARL that divides distribution grids into cells with inde-
pendent control agents and a coordinator for inter-cell power transfer,
demonstrating superior generalization to unseen structural disruptions
in IEEE-123 bus system experiments. A key innovation is their topology-
dependent action masks mechanism, which dynamically identifies un-
available actions after topology changes, addressing a limitation in
existing methods that assume fixed topology during restoration.

6.5.2 Key Findings and Practical Considerations

Sequential Decision-Making and Temporal Dependencies CLR re-
quires coordination between immediate switching actions and longer-
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term power dispatch—a multi-timescale challenge fundamentally differ-
ent from single-timestep demand-side management. Fan et al. (2024)
implement a 4-hour restoration horizon discretized into 16 steps, while
Li and Wu (2024) demonstrate that generator start-up sequences must
optimize both temporal and power resource allocation rather than fol-
lowing shortest paths. The process involves hierarchical dependencies
between self-starting black-start generators and non-black-start gen-
erators requiring external power, with effective strategies considering
parallel restoration paths and resource utilization.

Wang et al. (2023d) also recognize the Cold Load Pickup (CLPU)
effects where restored loads temporarily demand more power than their
steady-state values due to loss of diversity in thermostatically controlled
loads. This is modeled through P]dtem = lj,tp;ff “Pj;, where P]dtem is the
actual load demand at bus j and time ¢, [;; is the load energization
indicator (1 if load is energized at time ¢), p‘;ff “ is the CLPU ratio
representing the magnitude of load spike (>1), and P;; is the normal
steady-state load demand. This effect necessitates sequential restoration
planning to prevent system overload, creating temporal coupling in the
optimization through the restoration periods.

Multi-Energy Integration Multi-energy systems operate on different
timescales, with rapid power flow changes contrasting slower gas and
heat network dynamics (Wang et al., 2023c). This requires careful
control timestep selection and physics-informed safety layers handling
these coupled but different-speed dynamics. Constraints in one energy
vector directly impact others, requiring coordination between different
DER types including distributed generators, energy storage, and PV
systems (Du and Wu, 2022). Systems must also account for hierarchical
relationships between public-managed and private-managed DERs, as
operators can only directly control public resources (Fan et al., 2023a).

Partial vs Complete Blackouts During partial blackouts, operational
generators in “islanded” systems can supply power to outage areas,
enabling different restoration strategies compared to complete blackouts
(Li and Wu, 2024). Black-start DGs play a critical role in maintaining
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voltage and frequency stability, with DG output constraints requiring
immediate episode termination if violated (Si et al., 2024).

Network Topology Distribution system restoration fundamentally re-
quires handling dynamic microgrid boundaries (Si et al., 2024; Khattar
et al., 2025). Network reconfiguration affects power flow patterns and
system stability, making it a graph manipulation problem rather than
just load control (Jacob et al., 2024). Furthermore, distribution systems
require explicit radiality constraints (Wang et al., 2023d). During ex-
treme events, most network structure typically remains intact, enabling
multi-task learning frameworks where different network topologies are
treated as related but distinct tasks (Wang et al., 2023¢). Graph neural
networks effectively capture the combinatorial nature of switching deci-
sions and physical network connectivity (Jacob et al., 2024; Fan et al.,
2024).

System Integration Integration occurs through direct control of dis-
patchable generators and energy storage systems, existing DER monitor-
ing systems, and SCADA systems for measurement and control (Fan et
al., 2023a). A key aspect is to position systems as decision support tools
rather than autonomous controllers (Li and Wu, 2024). The method
connects with outage management systems for fault message collection
and transmission to multi-class classifiers (Wang et al., 2023d). Mixed
ownership environments, where microgrids belong to different utility or
non-utility owners, make centralized control impractical and necessitate
distributed control architectures (Vu et al., 2023).

6.6 EV Charging and Coordination

Rapid EV adoption introduces significant power demands that can
strain grid infrastructure while offering potential grid services through
V2G capabilities and demand flexibility. The EV charging coordination
problem spans multiple operational levels: distribution system operators
must manage charging schedules across stations while respecting network
constraints; charging station operators must allocate power among EVs
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with heterogeneous requirements; and route planning must optimize
paths considering energy consumption and charging availability.
Operational challenges include component-level constraints (battery
SoC limits, charging rate bounds, powertrain limits), system-level con-
straints (power balance, station capacity, grid stability), and significant
uncertainties in user behavior, electricity prices, and renewable genera-
tion. Table 6.6 summarizes recent safe RL approaches addressing these
challenges across various problem formulations and safety mechanisms.

6.6.1 Safe RL Techniques for EV Charging and Coordination

Constrained Policy Optimization (CPO) Li et al. (2019) adapt CPO
for EV charging by integrating charging/discharging constraints through
a cost function handling battery SoC limits. Their method employs
trust regions enabling stable policy updates while maintaining charging
demand satisfaction.

SAC-based Extensions Zhang et al. (2023d) develop Constrained
SAC incorporating constraint handling through Lagrangian relaxation
and rule-based safety filters. Their approach uses multiple constraint
terms for battery capacity limits, charging requirements, and final state
constraints, while introducing a novel EV grouping strategy (waiting,
eligible for V2G, charging, fully charged) reducing action space dimen-
sionality. Yang et al. (2025) introduce Augmented Lagrangian SAC
addressing standard Lagrangian limitations through quadratic penalty
terms, incorporating real-time electricity prices and charging patterns
into constraint formulations.

Penalty-based Methods Zhang et al. (2023f) implement multiple re-
ward components including penalties for battery depletion and inefficient
charging, with episode termination when battery levels become unsafe.
Jiang et al. (2021) use penalty functions during training for insufficien-
t/excessive charging, implementing hard constraints through calibration
during deployment. Biswas et al. (2024) develop Physics-informed Explo-
ration maintaining feasible action ranges, tracking infeasibility through
counters and updating action bounds based on observed violations.



108

Power System Applications

Table 6.6: Summary of Safe R, Methods for EV Applications

Problem Setup

System Model

Safety Aspects

Test Systems

(Li et al., 2019): EV charg-
ing scheduling. CMDP w/
cont. charging actions.

Battery charging dy-
namics with energy loss
model. Price-taker.

Battery energy lim-
its, charging rate con-
straints. CPO.

MISO electricity price
data (2017-2018). vs.
DQN, DDPG, Safety-
Prissy, MPC.

(Jiang et al., 2021): Coor-
dinated charging in park-
ing lot. Min. load variance
s. t. energy demands.

Maximum  charging
rate per bay. Statistical
patterns in vehicle
dynamics.

Energy demand satis-
faction, rate limits. Ac-
tion calibration for con-
straint handling.

15-20 charging bays, 52-
week training data. Py-
Torch implementation.

(Zhang et al., 2020a): Plug-
in Hybrid EV energy man-
agement. CMDP with neu-
ral network strategy actor.

Power-split hybrid with
double planetary gear.
Battery internal resis-
tance model.

Component speed/
power/torque  limits,
battery bounds. Coach
intervention for safety.

Dublin Bus route data.
Cloud-based training
with onboard deploy-
ment.

(Zhang et al., 2023f): EV
route planning with charg-
ing. MDP using power and
loops state space. Two-
layer hierarchical control.

Graph w/ distance/en-
ergy costs. Determinis-
tic travel times, piece-
wise charging.

Battery capacity and
energy feasibility con-
straints. Early termina-
tion for low battery.

Sioux Falls (24 nodes)
and Beijing network
(83,917 nodes). Comp.
w/ Integer Lin. Pro-
gram., Dijkstra, A*.

(Biswas et al., 2024):
Hybrid EV mgmt. State:
power, SOC, velocity.
Cont. power actions.

Toyota Hybrid Sys-
tem powertrain. Com-
ponent efficiency maps.

Power, SOC, current
constraints. Uses safety
layer and  physics-
informed exploration.

Urban Dynamometer
Driving Schedule train-
ing, Artemis Urban
Driving Cycle testing.

(Yang et al., 2025): EV
charg. scheduling under
uncertainty. CMDP with
continuous actions.

Simplified  charging
model focusing on SOC
dynamics. Price-taker.

SOC limits, charging
rate constraints. Aug-
mented  Lagrangian
method.

German electricity mar-
ket data (2018-2020).
Compared with DDPG,
SAC, MPC.

(Zhang et al., 2023d): Mi-
crogrid profit maximiza-
tion. CMDP with states
for time, photovoltaic gen-
eration, load, battery.

Microgrid with pho-
tovoltaic system, stor-
age, loads. Nonlinear
charging with Vehicle-
to-Grid capability.

Power balance, storage
limits, charging con-
straints. Constrained
SAC with safety filter.

100 charging piles, 3
vehicle types, 600kWh
battery. vs. CPO, La-
grangian SAC.

(Zhang et al., 2024d): Joint
charg. and computat. al-
location. Hierarchical two-
timescale control.

SOC dynamics model.
Uncertain vehicle ar-
rivals and tasks.

SOC limits, power con-
straints, task deadlines.
Lyapunov safety guar-
antees.

25 charging piles, 4 ve-
hicle models. 24% load
variance improvement.

(Zhang et al., 2023a): Real-
time charging with grid
commands. Two-stage Dis-
tributed PPO.

Uncertain travel pat-
terns.

SOC bounds, charg-
ing safety module, bias
elimination.

20 vehicles. vs. Twin
Delayed DDPG, SAC,
PPO.

Runtime Assurance Architectures Zhang et al. (2020a) implement a
Simplex architecture with coach-actor-double-critic framework, where
the coach provides a rule-based CD-CS (Charge-Depleting-Charge-
Sustaining) fallback strategy while dual variables handle constraint
satisfaction. When actions exceed feasible ranges, the coach intervenes
with penalty additions to help the actor learn feasible actions. Zhang et
al. (2023a) introduce two safety modules: an EV Charging Safety Module
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modifying charging/discharging power based on current SOC, and an
Allocation Bias Elimination Module employing Advantage Least Laxity
First (ALLF) using advantage functions to quantify charging flexibility
beyond immediate time constraints. Zhang et al. (2024d) develop a
safety-filter architecture with Lyapunov Constraints transforming long-
term charging constraints into state-wise conditions defining action
safety, and a State-Cost Action Function generating actions satisfying
these constraints. This approach transforms a constrained QP problem
into an unconstrained one where candidate safe actions are preselected
by the State-Cost Action Function.

Training Approaches

Various approaches employ offline training with simulated environments.
Li et al. (2019) sample 500 trajectories per iteration using simulated
charging scenarios. Zhang et al. (2020a) implement cloud server training
using historical driving cycles (80% training, 20% testing). Yang et al.
(2025) employ off-policy training with German day-ahead market price
data, enabling historical experience reuse without online interaction.

Safe exploration strategies include Zhang et al. (2020a)’s e-greedy
annealing with coach intervention verification, Biswas et al. (2024)’s
state-dependent action ranges updated based on encountered infeasi-
bilities, and Yang et al. (2025)’s maximum entropy regularization with
double-critics networks avoiding overestimation bias.

Data requirements vary across methods. Jiang et al. (2021) generate
52-week dynamic EV arrival/departure traces for training with 4-week
validation/testing traces. Zhang et al. (2023d) utilize PV generation
patterns across four weather types with Gaussian-distributed load pro-
files. Zhang et al. (2023a) incorporate both real-world charging data
and simulated grid conditions for their two-layer safety filter.

6.6.2 Key Findings and Considerations

Model and User Behavior Aspects Zhang et al. (2023d) and Zhang et
al. (2023a) incorporate nonlinear EV charging characteristics in battery
models, accounting for varying charging rates during constant-voltage
stages. For user behavior, Zhang et al. (2023d), Yang et al. (2025), Jiang
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et al. (2021), and Li et al. (2019) implement Gaussian-distributed initial
SOC and arrival times calibrated to commuting patterns, e.g., CBD
rush hours. Parking duration models vary from Gaussian distributions
(Jiang et al. (2021) using mean 8h, std 1.5h) to arrival-departure time
differences.

V2G Integration Zhang et al. (2023d) and Zhang et al. (2023a) de-
fine V2G operation windows aligned with grid demands, limiting V2G
operation below 0.25 SoC to minimize battery degradation. Yang et al.
(2025) and Zhang et al. (2023a) model bidirectional power flow with
continuous charging/discharging rates. Zhang et al. (2023a) quantify
flexibility contribution considering both immediate and long-term im-
pacts of charging schedule deviations, while Jiang et al. (2021) address
uncoordinated charging through load profile characterization.

For multi-stakeholder considerations, Zhang et al. (2023d) and Zhang
et al. (2024d) balance grid operator profits, EV user requirements, and
system-level objectives. Zhang et al. (2024d) implement pricing mech-
anisms linking charging prices to computation contribution, creating
relationships between grid services and edge computing resources.

Multi-timescale Operation Zhang et al. (2023d) and Zhang et al.
(2023a) implement multi-level control architectures, with Zhang et al.
(2023a) using DSO/Charging Stations/EVs hierarchy addressing large-
scale EV control scalability. Zhang et al. (2020a) demonstrate price-
based coordination between electricity and fuel consumption through
hierarchical Onboard Units for real-time control with cloud-based train-
ing systems. Control intervals range from 15-minute periods to daily
optimization horizons.

Integration Considerations Zhang et al. (2023a) address FERC Order
No. 2222 requirements for DER aggregation, noting distribution factor
determination challenges. Li et al. (2019), Jiang et al. (2021), Zhang
et al. (2023a), and Yang et al. (2025) outline infrastructure modifications
including continuous rate control capability, real-time SOC monitoring,
and charging rate control systems.
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6.7 Power System State Estimation

Traditional power system state estimation relies on model-based algo-
rithms (e.g. weighted least squares for static state estimation or Kalman
filters for dynamic estimation). Recent advancements explore RL for
data-driven enhancement, particularly under complex conditions.

RL techniques have been applied to improve state estimation ac-
curacy in both static and dynamic contexts. For example, Yuan et al.
(2022) develop a hierarchical deep actor-critic RL framework that treats
distribution system state estimation as a sequential decision problem,
jointly estimating system states and optimizing measurement selection
in real-time. This model-free approach demonstrates superior perfor-
mance in unobservable conditions compared to traditional weighted
least squares methods. On the dynamic estimation front, Hu et al.
(2020) provide theoretical guarantees of estimation error convergence
for nonlinear systems, integrating Lyapunov stability theory with deep
RL to ensure convergence even under model uncertainties and missing
data. Zhang et al. (2024c) use Deep RL for adaptive forecasting-aided
state estimation in distribution networks, outperforming Kalman filters
with hybrid measurements.

MARL facilitates distributed state estimation across control areas,
substations, or devices. Salamat et al. (2023) introduce Distributed
RL State Estimation where sensor nodes use local RL estimators with
consensus filters for global coherence, achieving faster tracking without
prior dynamic models. These approaches align with distributed energy
resources and PMU networks, offering scalability and resilience to
topology changes or failures.

Hybrid techniques blend physical modeling with data-driven learning.
Liu et al. (2024a) develop physics-inspired neural networks for secondary
distribution networks using power flow equation structures to guide
network architecture, constraining models to obey Kirchhoff’s laws while
requiring less training data than black-box approaches. Similarly, Habib
et al. (2023) propose Deep Statistical Solver using graph convolution
to propagate information along feeder topology with weak supervision
from power flow equations, capturing complex spatial correlations by
treating grids as graphs to improve robustness against bad or missing
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data.

Future Research Directions RL offers model-free adaptation, han-
dles nonlinearities, provides computational efficiency post-training, and
enables active decision-making. Achieving theoretical convergence guar-
antees through adaptive control and Lyapunov stability analysis is
essential, while integrating graph-based insights can enhance robustness,
as demonstrated by Jin et al. (2020)’s boundary defense mechanism
leveraging network topology to isolate attacked regions. Future methods
should combine physics-informed robustness with data-driven adapt-
ability for superior performance. Future research should prioritize safe
RL estimators with bounded errors, rapid bad data rejection (e.g., by
using federated learning to improve cybersecurity while preserving data
privacy (Kesici et al., 2024)), and robust contingency reconfiguration.
For MARL, exploring distributed reward shaping, consensus-based up-
dates, and graph neural network critics for multi-area estimation is
crucial. Achieving theoretical convergence guarantees through adaptive
control and Lyapunov stability analysis is essential, while integrat-
ing graph-based insights can enhance robustness, as demonstrated by
Jin et al. (2020)’s boundary defense mechanism leveraging network
topology to isolate attacked regions. Future methods should combine
physics-informed robustness with data-driven adaptability for superior
performance.

6.8 Cybersecurity in Power Systems

Modern power systems face sophisticated cyber threats targeting commu-
nication networks and control devices. Conventional security measures
often struggle with evolving attacks, prompting growing interest in RL
for autonomous and adaptive defense.

Detection Systems RL enhances both intrusion and anomaly detec-
tion by enabling adaptive learning without manual reconfiguration. The
goal is typically to identify unusual or suspicious deviations in system
measurements, control signals, or operational patterns that may in-
dicate cyberattacks (e.g. falsified data, malicious control commands)
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or incipient failures. For example, Kurt et al. (2018) pioneered online
cyber-attack detection using POMDP formulation with a model-free
algorithm that trains defenders with low-magnitude attacks, employs
sliding observation windows, and demonstrates superior performance
across various attack scenarios including false data injection, jamming,
denial of service, and network topology attacks. (Hu et al., 2022a) pro-
posed RL-driven Adaptive Feature Boosting, where agents dynamically
adjust focus on different data features, achieving approximately 97.3%
detection accuracy—a 5.5% improvement over non-RL baselines.

RL has proven particularly effective for detecting False Data Injec-
tion (FDI) attacks. Chen et al. (2018) model FDI attacks as a POMDP,
using Q-learning and kernel-density-based detection to adaptively iden-
tify malicious data manipulations. Recent approaches leverage federated
learning, enabling operators to jointly build detection models with-
out sharing private measurements (Kesici et al., 2024). Additionally,
Gautam (2023) employ RL for optimal PMU placement, enhancing
system-wide observability and robustness against FDI attacks. Beik-
babaei et al. (2025) develops model-free approaches protecting both
grid-forming and grid-following inverters without requiring internal
control parameters.

Secure Communication Agents observe channel conditions and jam-
mer behavior to learn optimal spectrum usage strategies, significantly
improving network reliability under attack. RL bolsters communication
security through dynamic adaptation of network configurations. Anti-
jamming applications optimize frequency hopping, power control, and
routing to overcome attacks on wireless sensor networks (Luo et al.,
2022). Xu et al. (2022) apply deep RL-based moving-target defense
randomizing data paths in IP networks to confuse adversaries, reducing
attackers’ ability to predict communication paths.

Threat Mitigation and Resilient Control RL plays a crucial role
in active threat mitigation, orchestrating control actions to maintain
power system stability during attacks. Maiti and Dey (2024) propose
safe deep RL frameworks where agents trigger protective actions (re-
lay tripping, load shedding, reconfiguration) with formal verification
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ensuring the controller will not drive the system into unsafe conditions.
Resource-constrained defense approaches use RL with temporal logic
specifications to prioritize actions (Moradi et al., 2023). Agents satisfy
high-level goals (encoded as logical formulas) while finding optimal com-
promises between competing objectives like sustaining service versus
isolating compromised areas. Zhang et al. (2024b) use RL to mitigate
cascading failures, generating adaptive load shedding strategies in real-
time as attacks unfold. Safe exploration techniques ensure agents do
not inadvertently destabilize the system during training or execution.

Multi-Agent Approaches MARL features prominently across all cy-
bersecurity applications. For detection, decentralized agents at different
network nodes learn to detect attacks in their vicinity, with attention
mechanisms prioritizing critical alerts (Sethi et al., 2021). Such dis-
tributed systems scale better with grid size and heterogeneity, achieving
higher detection rates with lower false alarms by combining local ob-
servations. Adversarial approaches frame detection as a game between
defender and attacker agents, creating more robust systems capable of
catching sophisticated adversaries (Mouyart et al., 2023).

For communication security, distributed MARIL-based anti-jamming
algorithms enable each wireless node to sense the spectrum and choose
communication channels. Through collaborative learning, nodes coor-
dinate to avoid jammed frequencies and establish resilient links (Ma
et al., 2024).

In threat mitigation, heterogeneous MARL frameworks employ spe-
cialized agents for different control actions (line reconfiguration, gen-
erator redispatch, load shedding), with coordinators ensuring optimal
combined responses (Moradi et al., 2024). This approach allows systems
to survive complex attack scenarios—isolating compromised substations
while rerouting power flow to prevent overloads. For networked micro-
grids with coupled dynamics, Mukherjee et al. (2024) demonstrate that
a vertical variant of federated reinforcement learning outperforms fully
decentralized architectures by enabling privacy-preserving parameter
sharing between agents while capturing system-wide electrical interac-
tions.
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Future Research Directions By learning optimal responses to com-
plex attack sequences, RL agents help grids absorb and recover from
attacks with minimal disruption, adapting to new tactics while coordi-
nating across networks. Future research should focus on enhanced safety
verification through formal methods, scalable MARL frameworks coor-
dinating across hierarchical control layers, transfer learning for adapting
security policies across different grid topologies, integration of opera-
tor knowledge into training, and adversarial training for anticipating
emerging attack vectors.
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Simulation Environments and Benchmarks

The preceding chapters established how safe RL can address power
system control challenges by tailoring algorithms (Chapters 2-5), archi-
tectures (Chapter 5), and application-focused formulations (Chapter
6). However, the proprietary nature of industrial software and the
wide-ranging simulation needs in power systems have spurred the de-
velopment of open-source, domain-specific environments. These tools
not only enable realistic training and evaluation of RIL-based strategies
but also promote reproducibility and fair comparisons across differ-
ent methods. Table 7.1 offers a high-level comparison of the leading
open-source simulation frameworks for power systems. Each entry sum-
marizes core features (e.g., voltage regulation, EV coordination), typical
approaches to safety constraints, RL integration compatibility, and
reference benchmark methods.

EV Charging and V2G ACN-Sim (Lee et al., 2021) is a widely used
simulator for EV charging coordination, focusing on realistic infras-
tructure constraints such as transformer and line current limits, J1772
compliance, and unbalanced three-phase systems. It integrates real
charging data (ACN-Data), ties into multiple power system tools (MAT-
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Table 7.1: Comparison of Open-Source RL Simulation Environments for Power

Systems
Overview Safety & MARL Integration & Evaluation
Model
(Vazquez-Canteli et Thermal demands; OpenAI Gym; Inter- Rule-based  controller,
al., 2020) CityLearn: Storage limits; Cen- faces with standard SAC; Multiple building
District-level DSM; Stan- tralized/Decentralized; data formats (building types/climate zones;
dardized environment; No  Blackbox model data/characteristics, CityLearn Challenge

co-simulation requirement

weather); SAM for PV

with multiple metrics

(Lee et al., 2021) ACN-
Sim: EV charging co-
ordination; Infrastructure
planning; Modular, object-
oriented architecture

Infrastructure con-
straints (e.g., J1772
standards, transformer
limits);  Centralized
control

OpenAl Gym; MAT-
POWER; PandaPower;
OpenDSS; ACN-Data
for real data and ACN-
Live for field testing

12,000+ unit/integration
tests; DBaselines( e.g.,
Round Robin, Least-
Laxity First, MPC)

(Pigott et al., 2022) Gri-
dLearn: VVC via building
management (smart invert-
ers, storage, flexible loads);
Grid-/building-level obj.

Hard constr.: thermal
deadbands, voltage lim-
its, power factor; 96 in-
dependent agents; De-
centralized MARL

CityLearn;  OpenAl
Gym; PettingZoo; Sta-
ble Baselines; Multiple
climate zones/building
models

Rule-based control base-
line; IEEE 33-bus net-
work

(Biagioni et al., 2022) Pow-
erGridWorld: Building co-
ordination for VVC; Het-
erogeneous system control
(building, PV, EV)

Soft voltage limits and
thermal comfort; Co-
operative/competitive
MARL; Heterogeneous
agents

OpenDSS; EnergyPlus;
RLLib; CityLearn/Gri-
dLearn

MADDPG; PPO; Homo-
geneous/heterogeneous
agent scenarios

(Henry and Ernst, 2021)
Gym-ANM: DSM; Min.
loss via DERs and genera-
tor control

Voltage/current/SOC
limits; Penalty-based
constraints

OpenAl Gym; Stable-
Baselines3; Power
flow models; Newton-
Raphson solver

MPC, PPO, SAC; Mul-
tiple scenarios (windy
night, high EV demand,
high renewables)

(Fan et al., 2022) Power-
Gym: VVC with device co-
ordination (voltage regula-
tors, switchable capacitors,
and batteries)

Hard constr.: voltage
bounds, device limits,
SOC constraints; Cen-
tralized

OpenDSS; OpenAl
Gym; Stochastic load
profiles;  Multi-phase
modeling

PPO, SAC; IEEE sys-
tems  (13/34/123/8500-
bus)

(Orfanoudakis et al., 2024)
EV2Gym: EV charging op-
timization; Comprehensive
V2G modeling

Transformer /battery/statisB3; Real EV data;

constraints  (normal-
ization or penalty);
Cooperative MARL

Market pricing; PV

generation

Heuristics e.g., Round
Robin, MPC, baselines
from SB3; Tested up to
10K charging stations

(Sahu et al., 2023) DSS-
SimPy-RL: CLR via net-
work reconfig.; Network re-
routing against congestion
and cyber threats

Voltage/queue  limits;
Channel capacity; Re-
silience metrics; Cen-
tralized

OpenDSS; SimPy; Pow-
erGym for VVC; SB3;
Cyber-physical model-

ing

Spanning tree; DQN/P-
PO/A2C; Expert
heuristics; N-1/2/3 con-
tingencies; IEEE systems
(13/34/123/8500-bus)

(Yeh et al., 2024) Sus-
tainGym: EV charging;
Market bidding; Data cen-
ter scheduling; Cogenera-~
tion; Building control

Physical constraints via
penalties; No hard con-
straints; MARL envi-
ronments (EV, Cogen,
Building)

ACNSim; IEEE RTS-
GMLC;  EnergyPlus;
RLLib; SB3; Distribu-
tion shifts (demand,
environment)

SAC, PPO, MPC; Car-
bon emissions; Distribu-
tion shift evaluation

POWER, PandaPower, OpenDSS), and wraps seamlessly with OpenAl
Gym for RL-based scheduling or load-flattening tasks. With thousands
of built-in tests and a field testing platform (ACN-Live), ACN-Sim
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provides a practical baseline for comparing new algorithms against
well-established approaches.

EV2Gym (Orfanoudakis et al., 2024) extends the focus to V2G sce-
narios. It embeds battery degradation models and scales up to thousands
of charging stations, a feature particularly relevant for large-scale load
management or aggregator-based scheduling. Real EV data (ElaadNL,
RVO-NL), standardized Gym interfaces, and support for multiple control
strategies (RL, mathematical programming, heuristics) make EV2Gym
a flexible test bed for profit maximization and setpoint tracking tasks
under transformer and battery constraints.

Building Energy Management and Demand Response CityLearn
(Vazquez-Canteli et al., 2020) provides a standardized OpenAl Gym
environment for building energy management and demand response.
Its core tasks include load shaping, coordinated thermal and electrical
storage, and peak demand reduction across multiple buildings. CityLearn
leverages pre-simulated data rather than full co-simulation, balancing
computational tractability with realism. Constraints (comfort, storage
bounds) are enforced by action clipping. The environment includes
both centralized and multi-agent modes, with a rule-based controller
(RBC) and a reference SAC implementation as baselines. This platform
is used for CityLearn Challenge with results compared on metrics such
as ramping, load factor, and peak demand.

PowerGridworld (Biagioni et al., 2022) centers on building coordina-
tion for voltage regulation and heterogeneous resource management in
multi-agent setups. Its modular architecture supports both homogeneous
and heterogeneous agents, allowing flexible combinations of buildings,
PV systems, and EV chargers under cooperative or competitive settings.
Constraints (e.g., voltage limits, thermal comfort) are handled via soft
penalty terms in the reward function rather than hard safety checks. It
integrates with OpenDSS for power flow calculations, EnergyPlus for
building modeling, and RLLib for RL algorithm implementations (e.g.,
MADDPG, PPO).

Distribution Network Management (VVC, actine network manage-
ment) GridLearn (Pigott et al., 2022) tackles voltage regulation chal-
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lenges in PV-rich grids by coordinating distributed resources such as
smart inverters and flexible loads. Its key feature is the decentralized
multi-agent approach (up to 96 agents) that focuses on both grid-
(voltage stability) and building-level (thermal storage, PV curtailment)
objectives. Constraints (thermal comfort, voltage, power factor) are
enforced through external checks. GridLearn uses PettingZoo for multi-
agent RL and leverages PandaPower for network simulation.

Gym-ANM (Henry and Ernst, 2021) offers single-agent active net-
work management (ANM) for controlling distributed generation, storage,
and voltage or line flows. It integrates with Stable Baselines3 for RL
and provides penalty-based rewards for constraint handling (voltage,
line capacity). Benchmark tasks compare with baselines (MPC, PPO,
SAC) on scenarios such as wind-dominant nights, EV-heavy demand,
and high-renewable scenarios.

PowerGym (Fan et al., 2022) specifically targets VVC in distribution
feeders. It includes standardized IEEE test systems (13-, 34-, 123-,
and 8500-node), uses OpenDSS for multi-phase load flow, and enforces
constraints (voltage bounds, SOC limits) via action projections. Different
RL algorithms (PPO, SAC) are evaluated and compared for various
control horizons and battery configurations.

Multi-Application Platforms DSS-SimPy-RL (Sahu et al., 2023) com-
bines power distribution tasks (network reconfiguration, VVC, CLR)
with cyber network routing and congestion management. By interfac-
ing OpenDSS (for power flow) and SimPy (for discrete-event cyber
simulations), it creates a lightweight alternative to full co-simulation
frameworks such as HELICS. The environment models both physical
(voltage, capacity) and cyber (router queue limits, channel capacity)
constraints as part of the reward and state monitoring, using metrics
such as betweenness centrality to measure resilience. It integrates with
standard RL libraries (DQN, PPO, A2C) and has been validated on
IEEE distribution systems (13-bus, 34-bus, 123-bus, and 8500-node),
with comparisons to random actions and spanning-tree heuristics.
SustainGym also integrates with established tools (ACN-Sim, Ener-
gyPlus) and RL libraries (RLLib, Stable Baselines3), and it provides
benchmarking against non-RL baselines, MPC, and standard RL al-
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gorithms (SAC, PPO). Because it offers dedicated modules for EV
charging or building control, it can be briefly referenced in those respec-
tive sections, but its wide range of tasks and emphasis on COz-based
objectives place it more naturally under “Multi-Domain Platforms.”
SustainGym (Yeh et al., 2024) unites several power- and sustainability-

related tasks under a single environment, including EV charging, market
bidding, data center scheduling, cogeneration dispatch, and building
control, with a unique focus on realistic distribution shifts. Three of its
five environments explicitly support multi-agent control, making it use-
ful for cooperative scenarios such as building coordination or distributed
EV charging. Constraints are enforced through penalty-based rewards
rather than hard bounds. SustainGym integrates with established tools
(ACN-Sim, EnergyPlus) and RL libraries (RLLib, Stable Baselines3),
and it provides benchmarking against non-RL baselines, MPC, and
standard RL algorithms (SAC, PPO).

RL Integration and Benchmark Support Most simulators adopt Gym-
compatible interfaces, reducing the overhead for researchers using li-
braries like Stable Baselines and RLIib (Lee et al., 2021; Pigott et al.,
2022; Vazquez-Canteli et al., 2020; Biagioni et al., 2022; Fan et al., 2022;
Yeh et al., 2024; Henry and Ernst, 2021; Orfanoudakis et al., 2024;
Sahu et al., 2023). Single-agent tasks commonly use standard Gym
wrappers, while multi-agent scenarios rely on PettingZoo or RLIlib’s
multi-agent extensions. The presence of built-in baselines (e.g., RBC
or MPC) and standard test feeders further encourages reproducibility
and consistent benchmarking across different RL algorithms. This in-
tegration reduces barriers to entry for newcomers, facilitating robust
benchmarking against established algorithms.

Scalability and Real-Time Performance Many platforms highlight
potential for large-scale or real-time studies, yet few provide thorough
benchmarks of computational speed at increasing scales. Works such as
(Vazquez-Canteli et al., 2020; Pigott et al., 2022; Biagioni et al., 2022),
and (Yeh et al., 2024) mention potential efficiency optimizations (e.g.,
using pre-simulated data or distributed computing). (Henry and Ernst,
2021) offers timing comparisons for RL vs. MPC on moderate-scale
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tasks, and (Orfanoudakis et al., 2024) highlights runtime evaluations
up to 10,000 charging stations—illustrating linear growth at smaller
scales and exponential growth beyond certain thresholds. Such granular
performance reporting is vital for researchers aiming to adapt these
simulators to real-time or large-scale deployments.

Proprietary Simulation Environments in RL Proprietary simula-
tors such as DIgSILENT PowerFactory, PSS®E, and PSCAD offer
high-fidelity modeling capturing detailed system dynamics, protection
schemes, and device-specific behaviors. Researchers integrate these tools
through Python APIs, COM interfaces, or co-simulation frameworks.
PowerFactory connects to Python-based RL agents via socket communi-
cation or direct API calls, while PSS®E’s Python interface (PSSPY) and
PSCAD’s automation scripts implement environments where agents
receive measurements and return control actions.

Typical applications include voltage control using PowerFactory mod-
els for detailed network responses, frequency regulation using PSS®E for
transmission grid dynamics, and transient/EMT studies using PSCAD
for microgrid control and fault recovery. While providing unmatched
accuracy and industry relevance, these tools present challenges including
slower simulation speeds hindering rapid training, licensing requirements,
and complex integration compared to open-source alternatives. Table
7.2 compares these approaches—proprietary simulators excel when re-
search requires high accuracy and detailed modeling, while open-source
environments facilitate rapid experimentation with lower computational
overhead.

Integration with Non-RL Methods Although several platforms fo-
cus heavily on RL, some do facilitate comparisons with traditional
controllers. For instance, Vazquez-Canteli et al. (2020) offer a rule-
based baseline, while Lee et al. (2021) and Henry and Ernst (2021)
integrate with mathematical programming tools (CVXPY) for MPC-
based benchmarks. Orfanoudakis et al. (2024) include both heuristic
baselines and commercial solver integration (Gurobi) for systematic
performance comparisons. Going forward, adding more robust ties to
mathematical programming frameworks and classical control methods
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Table 7.2: Comparative Overview of Proprietary and Open-Source RL Environments
for Power Systems

Aspect Proprietary Simulators Open-Source Environments

Examples DIgSILENT PowerFactory, See Table 7.1
PSS®E, PSCAD

Integration Python APIs, COM interfaces, Native Gym API wrappers; pure
co-simulation frameworks Python implementations

Fidelity High-fidelity models capturing Simplified or aggregated models;
detailed device dynamics and focus on computational efficiency
protection schemes

Advantages Industry-grade accuracy; vali- Fast simulation speeds; ease of
dated against real-world data prototyping and reproducibility

Challenges Slower simulation; licensing Limited detail; may overlook low-
costs; complex integration level grid dynamics

would strengthen each platform’s utility as a comprehensive benchmark-
ing tool. Furthermore, there is a strong need and potential to leverage
that support to develop and test hybrid methods that combine RL with
traditional methods such as MPC, which has demonstrated a strong
potential in some of the existing benchmarks Khattar and Jin, 2023.

Safety Handling and Operational Constraints Constraint handling
commonly depends on the following two strategies:

e Simulator Enforced: Action clipping or environment overrides
when unsafe actions occur (e.g., CityLearn, GridLearn).

o Penalty-Based: Violations incur negative rewards, with no hard
action blocking (e.g., PowerGridWorld, EV2Gym, Gym-ANM,
PowerGym, SustainGym).

These approaches can be adapted for safe RL by exposing separate
constraint signals in the environment’s observation or info dictionary,
allowing safe RL algorithms to track violations explicitly. However, none
of the surveyed environments inherently implement a safe RL interface.
Researchers still must modify reward structures or environment logic
to ensure constraint feasibility throughout training.
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Open Challenges, Lessons Learned, and Future
Directions

Safety Guarantees During Learning and Operation

Open Challenge: How can we ensure robust safety quarantees during
both the learning process and real-time operation in power systems,
without incurring prohibitive computation while adapting to changes?
A “safety in depth” approach offers a promising direction: multiple
protective layers can be combined or selected based on timescale and
performance constraints. One layer focuses on provably safe policies:
for instance, Jin and Lavaei (2020) and Gu et al. (2022) use stability
certificates via IQCs to obtain a convex set of safe policy parameters,
while Cui et al. (2023) enforce monotonicity of the policy. Another
layer introduces real-time safety filters: Zhang et al. (2023c) employ
DNN-assisted projection for voltage control, and Shi et al. (2023) use
first-order approximations to reduce computation. A final layer adapts
safety filters to shifting conditions, as Zhao et al. (2023) dynamically
tune parameters to handle uncertainties, Wan et al. (2023) adjust CBF
parameters for frequency control, and Zhang et al. (2023b) implement
time-varying Lyapunov constraints in EV charging. These layers can
also interact: for example, Chen et al. (2022) and Sun et al. (2024) show
that logging both pre- and post-filtered actions accelerates learning of
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safer policies. Each layer must balance strict constraints (e.g., barrier
functions) that limit exploration but guarantee near-zero violations, and
softer, penalty-based methods that allow controlled violations but risk
higher uncertainty. Moreover, combining model-free SRL (focused on
policy parameters) with model-based methods (for runtime assurance)
can naturally yield a hybrid system that maintains flexibility while
strengthening safety.

Takeaway: An integrated, multi-layered design can address varied
safety requirements by combining innately safe policies, runtime
corrections via optimization-based filters, and adaptive modules for
evolving conditions. Yet, significant research gaps remain in unifying
these tools to achieve both rigorous safety and the adaptability
demanded by large-scale, dynamic power systems.

Addressing Large-Scale Complexity

Open Challenge: How can RL solutions manage the combinatorial
explosion of nodes, actions, and data in large-scale power systems un-
der real-world constraints such as partial observability, communication
delays, and dynamic network topologies?

Decomposition helps isolate complexity into smaller segments. Control-
scope partitioning, such as bi-level design for local load agents and
broader distribution operations (Zhang et al., 2024a), or physics-based
methods that exploit generator coherency (Kwon et al., 2024), allow
targeted control of inter-area oscillations without losing global coordi-
nation.

Managing sparse rewards and long horizons poses additional chal-
lenges, as seen in CLR (Chapter 6.5) or day-ahead scheduling. Shaping
intermediate rewards (e.g., partial load restoration) or adopting hierar-
chical RL with sub-goals can accelerate training and boost final policy
quality.

Topology-awareness improves scalability by embedding network
structure in the control design. Graph-based methods (e.g., (Mu et al.,
2023; Jacob et al., 2024)) preserve local relationships and cut down on
parameter growth for tasks such as reconfiguration or VVC.
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Distributed and multi-agent approaches (Chapter 4.2) further mit-
igate complexity by assigning local controllers to network subsets.
However, they introduce challenges such as partial observability, non-
stationarity, and coordination overhead. Efficient communication proto-
cols (e.g., neighbor-to-neighbor with spatial discounting) and consensus
mechanisms can curb excessive messaging, though delays, topology
changes, and agent failures must be addressed (Liu and Wu, 2021; Guo
et al., 2023; Fan et al., 2023b). Parallelization additionally streamlines
training: collecting experience from multiple environments and sharing
parameters reduces wall-clock time (Zhang et al., 2023a; Shi et al., 2023)
and aligns well with the CTDE framework (Chapter 4).

Takeaway: Segmenting large power grids by control scope, physics-
based structure, or timescales eases complexity, while reward-
shaping, topology-aware design, coordination protocols, and paral-
lelization keep training and execution scalable. However, real-world
communication delays, agent failures, and non-stationary conditions
pose challenges for reliable operation at scale.

Rethinking Safety in Uncertain and Nonstationary Environments

Open Challenge: How can RL methods achieve “open-world” safety
in power systems, where frequent distributional shifts and extreme black-
swan events demand the agent to remain effective and adaptive through-
out unpredictable, off-nominal operating states.

Modern safe RL approaches often view safety as a fixed constraint:
the agent simply avoids known violations in a stationary, “closed-world”
environment. Yet real-world power grids are anything but static, with
demand shifts, renewable volatility (especially in low-inertia systems),
environmental disruptions, and potential cyberattacks. True safety
necessitates robust or risk-aware generalization that extends beyond
finite training scenarios and prepares the agent for unseen “black-swan”
events.

A vital shift is to regard safety as a performance metric (Figure 8.1).
Rather than aiming to be “safe enough” in a narrow set of conditions, an
RL policy actively seeks to excel in safe behavior across distributional
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Figure 8.1: A conceptual shift from closed-world safety—treating safety as a
constraint in familiar, trained conditions—toward open-world safety, where the
system must adapt to nonstationarity, unforeseen events, and extreme scenarios by
treating safety itself as a performance objective.

shifts. Achieving this shift requires addressing nonstationarity, account-
ing for unforeseen or partially observed threats. Achieving this pivot
involves coping with nonstationarity, anticipating partially observed
threats, and refining safe control strategies in real time before failures
escalate.

Meta-safe RL offers a promising framework for tackling these chal-
lenges, with a meta-learner continuously improving how a base learner
interacts with new tasks or environmental states (c.f., Fig. 2.2 for an
illustration). By refining strategies on the fly, the system acquires adap-
tive safety, swiftly assimilating new constraints or hazard information
while preserving functional performance.

This approach aligns with the idea of antifragility (Taleb, 2014),
which pushes beyond mere robustness by treating severe disruptions
and rare events as opportunities to improve rather than as temporary
setbacks. As discussed in (Jin, 2024), computational antifragility can
be pursued through meta-learning that accelerates safe adaptation with
each disturbance, POMDPs and continual learning that incorporate
partial observability, multi-objective RL that balances safety with other
grid goals, and foundation models and pretraining that enable in-context
learning. By integrating these paradigms, an RL agent can adapt within
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an extreme event, avoid catastrophic failures before they unfold, and
emerge more capable of tackling future contingencies.

Takeaway: Safe RL must move from static, constraint-focused
methods to approaches that view safety as a core performance goal
under distributional shifts. In doing so, agents become able to adapt
and even improve their safe behavior under disruptive conditions,
aligning with antifragile principles that favor continual learning and
mid-event refinement to avert catastrophic failures.

Leveraging Foundation Models for Enhanced Safety and Scalability

Open Challenge: How can large-scale, pretrained foundation models
be effectively integrated into power system control to enhance safety,
scalability, and adaptability—across simulation environments, model-
based planning, and real-time operation—uwithout compromising strict
operational constraints?

Foundation models are large-scale neural networks trained on diverse,
extensive datasets that can be adapted to a wide range of downstream
tasks with minimal fine-tuning. While these models have transformed
fields such as natural language processing and computer vision, their
application to power systems is still emerging. These models show
promise for learning transferable representations that could address
complex power grid challenges from ontingency analysis and forecast-
ing to control operations and cybersecurity (Bommasani et al., 2021;
Hamann et al., 2024). As demonstrated in DeepSeek-rl (Guo et al.,
2025), foundation models can be enhanced through RL with sparse,
rule-based rewards—a crucial advantage for power systems where data
is scarce but constraints are well-defined.

Recent applications include large language models (LLMs) for opti-
mization auto-formalism that translate natural language into solvable
optimization formats (Jin et al., 2024), and PowerPM (Tu et al., 2024),
a pioneering foundation model for electricity time series that captures
both temporal dependencies and hierarchical relationships, demonstrat-
ing strong performance across 44 downstream power system tasks. In
simulation environments, these models could enable fast digital twins
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for accelerated control policy training.

Despite promising advances, significant challenges persist: bridging
the sim-to-real gap, ensuring real-time inference under strict latency
requirements, and achieving formal safety certification. Embedding
physics-informed constraints and safe RL frameworks with runtime
safety layers would help maintain critical system limits during online
adaptation (Chapter 5). Integration with legacy infrastructure requires
careful design to preserve operator trust and regulatory compliance.

Takeaway: Foundation models offer transformative potential for
scalable, adaptable power system control, but critical challenges in
real-time performance, safety guarantees, and seamless integration
with existing systems must be addressed before full operational
deployment in live grid environments.

Integration with Existing Infrastructure and Operational Al

Open Challenge: How can advanced safe RL methods be effectively
integrated into legacy power system infrastructures—spanning local droop
controllers, discrete tap changers, SCADA networks, and regulatory
frameworks—without disrupting trusted operational routines or requiring
prohibitively extensive overhauls?

A central theme across many safe RL deployments is the decision to
retain proven baseline controllers and architectures, with RL providing
higher-level coordination or advisory signals. In frequency regulation, for
instance, Cui et al. (2023) and Kwon et al. (2023) adjust the setpoints of
existing droop loops rather than replacing them outright, thus preserving
fundamental control structures while introducing an adaptive learning
layer on top. This same pattern appears in volt-VAR control, where
Sun et al. (2024) position RL as a decision-support module rather than
an autonomous controller, thereby balancing system-wide optimization
with local responsiveness.

Communication demands vary considerably depending on the scope
and timescale of control. In frequency regulation, some works require
minimal local measurements (e.g., (Shuai et al., 2024; Cui et al., 2023))
or short-range communications, whereas others employ more compre-
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hensive real-time data exchanges of tie-line flows and generator statuses
(Kwon et al., 2023). Update frequencies range from sub-second intervals
(100Hz) for fine-grained droop setpoint adjustments to multi-minute
intervals (Xia et al., 2022). Approaches in volt-VAR control use time-
synchronization or neighbor-based averaging (Zhang et al., 2023b; Guo
et al., 2023), allowing effective coordination even with limited data links.

On the hardware and computational side, many RL-based frequency
control strategies (e.g., (Xia et al., 2022; Shuai et al., 2024)) run on
standard computing platforms, yet demands vary substantially. Sim-
pler control laws compute new setpoints within milliseconds, while
advanced approaches employing large neural networks or quadratic
programming may require more time or parallel processing. For crit-
ical load restoration, RL typically connects directly to dispatchable
generation and storage via existing DER monitoring systems, echoing
outage management procedures that handle fault messages and system
topologies.

Industry trust and formal certification remain pressing concerns.
Demonstrating compliance with grid codes (NERC BAL-003-1, ENTSO-
E guidelines) and meeting strict frequency-recovery timelines encourages
a hybrid approach in which RL solutions coexist with fallback controllers,
robust safety verification, and hardware-in-the-loop tests. For EV ag-
gregation, Zhang et al. (2023a) align RL strategies with FERC Order
No. 2222, detailing incremental infrastructure modifications such as
continuous charging-rate controls. In all these contexts, the overarching
lesson is that modern RL must enhance or complement existing control
methods rather than replace them, thereby reducing adoption barriers
while preserving reliability.

A promising future direction is the operational deployment of
RL-based control systems in live power grids. While many RL ap-
proaches have been validated in simulation or pilot studies, transition-
ing them into production environments necessitates stringent safety
verification, real-time adaptability, and seamless integration with legacy
systems. Early deployments—such as the High Performance Adap-
tive Deep-Reinforcement-Learning-based Real-time Emergency Control
(HADREC) emergency controller (Chen, 2023) and Dubai Electricity
and Water Authority (DEWA)’s RL-based gas turbine auto-tuning—
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demonstrate the potential of operational AI. Additionally, pilots in
wind farm control and demand-side management illustrate that, with
appropriate hybrid architectures (combining offline training on digital
twins with adaptive, real-time safety filters), safe and multi-agent RL
can effectively enhance grid performance without compromising system
reliability.

Key Takeaways. Safe RL thrives best when it integrates seamlessly
with established operating routines, from droop or PI regulators in
frequency control to tap-changer logics in volt-VAR tasks. Rather
than discarding proven solutions, most implementations overlay
RL-driven coordination or advisory signals on top of legacy systems,
ensure robust data pathways, and satisfy industry certification
demands through fallback mechanisms, real-time constraints, and
conservative incremental deployment.
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