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Abstract—Extreme weather events and/or cyber-attacks can
significantly disrupt the power generation of a power grid,
leading to catastrophic consequences. In this paper, the critical
load restoration (CLR) problem in the community distribution
grid is addressed. Existing approaches for CLR rely on the
assumption that the grid topology does not change during the
restoration period. However, it is highly likely that, under major
disruptions, some of the buses/lines can get disconnected and
change the underlying topology of the grid. These uncertain
topology changes could lead to a different CLR problem formu-
lation as well as a restoration strategy. To this end, we propose
a hierarchical multi-agent reinforcement learning (HMARL)
framework for CLR, which uses fopology-dependent action masks
(TDAM) to handle the changing topology. The main idea is
to divide the distribution grid into multiple cells capable of
independent control and a coordinating agent to allow power
transfer between different cells under topological variations
during restoration. Moreover, TDAM helps identify the actions
that are unavailable after the topology change. We demonstrate
the effectiveness of the proposed method on a modified IEEE-
123 bus system, showing that it achieves robust load restoration
despite fluctuating topology.

Index Terms—Critical load restoration, distribution grid,
multi-agent reinforcement learning, topology uncertainties.

I. INTRODUCTION

The increasing power demands due to rapid urbanization
have led to increased stress on our power grids, which can
lead to power outages [1]. Moreover, extreme weather events
and/or cyber-attacks make power grids more vulnerable to
power outages. The increasing integration of distributed energy
resources (DERs) allows power backup during outage events,
improving grid resiliency. Devices such as battery energy
storage systems (BESS) and solar PV panels, equipped with
grid-forming and grid-following inverters, can support loads
and maintain power supply during grid failures by acting as
decentralized power sources [2]. Effective management and
coordination of these DERs are essential to maximize their
potential for load restoration under power outages.

Traditional approaches for critical load restoration (CLR)
involve formulating an optimal power flow (OPF) problem
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to achieve coordinated control over a restoration horizon
[3]. For example, in [4], the authors formulate the load
restoration problem as a mixed integer non-linear program.
In [5], the authors formulate the restoration problem using
the alternating direction method of multipliers (ADMM) al-
gorithm, where they model the nonlinearities from three-
phase unbalanced power flow and distribution components
using a convex quadratic programming model. However, the
OPF problems are non-convex and NP-hard to solve, where
the existing solutions rely on the convex surrogates, leading
to approximation errors. Moreover, the inherent uncertainty
in the renewable DERs generation increases the complexity
during real-time control. Stochastic and robust optimization
approaches have been proposed to overcome these limitations
[6] but still suffer from high computational complexity during
real-time implementation.

Recently, reinforcement learning (RL)-based solutions have
emerged as an alternative to solve the load restoration problem
due to their ability to adapt to the changing conditions [7], [8].
In RL-based approaches, the CLR problem is formulated as
a Markov Decision Process (MDP), where the agent contin-
uously interacts with the environment/MDP to compute the
optimal set of actions (policy). The main advantage of the
RL-based approach is that it allows the policy to be trained
offline before the deployment, allowing for fast, real-time
implementation during the outage event.

Despite the recent successes of RL-based and optimization-
based approaches, none of the existing solutions can handle the
cases where the underlying topology of the microgrid changes.
Topology changes typically involve the loss of microgrid
elements (lines or buses) due to an extreme event. It can
trigger a cascade of events involving sectionalized switches
and fault location, isolation, and service restoration (FLISR)
mechanisms. These events can significantly alter the system’s
topology, potentially disconnecting entire portions of the grid,
including lines, loads, and DERs. This further leads to a
different action space for the RL formulation of the CLR due
to disconnected DERs. Consequently, the system’s generation
and load restoration capabilities are also directly impacted,
affecting the overall performance and rewards associated with
the RL formulation for the CLR problem.

In this paper, we address the problem of CLR under topol-
ogy changes using a hierarchical multi-agent RL. (HMARL)
framework. HMARL consists of two main components. The
first component of HMARL is hierarchical RL structure,
where, after the power outage, the distribution system is



IEEE POWER ENERGY SOCIETY GENERAL MEETING 2025

/\.

CLRAgent1 | | CLRAgent2 [ CLRAgent3

Action
mask

Topology Kt 1 Topology Ko | Actions
identification identification

I State

Cell-1

Phus &

Power
transfer

cell3

YN
ﬁmﬁ‘Actions

transfer

Power

Fig. 1: The proposed hierarchical multi-agent RL method
for CLR. It consists of a topology identification module that
outputs the current switch status ~; . for each cell, which is
further used to construct action masks M; . for each cell.

divided into multiple community microgrids, which we refer
to as cells. During the load restoration period, each cell dis-
connects from the main grid and is controlled by its RL agent
to restore the critical loads. While recent works have explored
decentralized MARL for CLR, there is no coordination among
different agents to restore the load. We propose a hierarchi-
cal RL component consisting of another coordinating agent,
referred to as the COR agent, which controls the power flow
between different cells. This splitting of the entire network into
distinct cells with power flow coordination among them allows
for a robust and shared response to topology changes during
the restoration period. The second component of HMARL is
the topology dependent action masks (TDAM) to handle
the changing action spaces under changing topology, which
informs the agents of the unavailable actions as the topology
changes (see Section III-B). The overall learning architecture
is shown in Fig. 1. The main contributions of this work are:

1) We propose a novel hierarchical multi-agent RL frame-
work for CLR, which can handle uncertain topology
changes during the restoration period.

2) We propose the topology-dependent action masking to
handle the dynamic action spaces of the RL agents during
topology changes.

3) Finally, we validate the effectiveness of the proposed
method on a modified IEEE-123 bus system and show
that the proposed method can restore critical loads even
under contingencies, including topology changes.

A closely related work of [9] proposes real-time outage
management, where the authors consider topology changes
during test time. However, their method is developed for
distributed network reconfiguration, which does not change the
action space after topology changes. In contrast, our approach
is concerned with load restoration using different DERs and
also faces the additional challenge of changing action space.

II. PROBLEM FORMULATION
A. CLR Problem Formulation

The goal of the critical load restoration problem is to restore
as many critical loads as possible during the power outage

duration. Let T" be the total outage duration, where we use
teT ={1,...,T} to denote the discrete time steps of the
outage duration and £ to denote the set of all loads. As we
divide the microgrid into different cells, we denote each cell
by ¢ € C = {1,....n°}, where the criticality of each load is
denoted by an importance factor 2%(i € £). The total number
of loads is denoted by N = L] = > .. N., where N, is
the number of loads in cell c. A load 7 is called critical if
z; > 2" for some threshold z*". The load request at time ¢
is denoted as pL e = ptCLC el pNL "4 which collects both
critical and non-critical load request at time ¢ in cell c. We
denote the set of PV generators by H, battery energy storage
systems (BESS) as £, and fuel-based generators as D, and all
DERs combined as G :=HUE UD.

The control actions for each RL agent in cell c is denoted as
z = [py, 47, pf . qf £ wi,pi,ap]T where p7,q; denotes the
DER power set points, p~, q~ denotes the amount of restored
load, and w¢,p¢,q¢ denotes the switch status and the power
transfer among different cells, respectively. The overall load
restoration problem can be formulated as follows:
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where T%R and v; . denote the load restoration reward and

the voltage violation penalty at time ¢ in cell c. The first term
of T‘CLR is proportional to the restored load, pﬁc to promote
hlgher load restoration, while the second term, ¢; . penalizes
the previously restored critical loads. In (1d), f)?; denotes the
relative 1oad restoration level which is the element-wise ratio
between pZ, and p . H(-) is the element-wise Heaviside
step function and is used to select the loads whose relative load
restoration level is dropped from the previous step. In (lc),
Power flow and power balance constraints are shown in (le)
and (1g). The voltage violations are captured in (1f), where v, .
denotes the bus voltages in cell ¢, A" is the penalty factor with
v and v denoting the upper and lower bounds, respectively. All
DERs have maximum available fuel E/ as shown in (1h),
where 7 is the control interval, and (1i) shows the BESS
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state of charge Sf limits. Finally, (1j) and (1k) denote the
radial topology and operational constraints. In this study, we
focus mainly on scheduling DERs and load pick-up, and their
dynamic performance is not considered for simplicity.

B. MARL Formulation for Load Restoration

We first define the observation and action spaces of CLR
and the COR agents.

Observation space for the CLR agents:
[pZ:LCJCab‘ts,mdfmptﬁ,’creqvptﬁfl,mHtcat]—r’ where szc is the K-
step look ahead forecast of the PV power generation from
time ¢, bic is the SOC of all BESS in cell ¢, dfc denotes
the remaining fuel in the generators, pf”;eq and pf_,; . denote
the the current load requests and the load restored at previous
time step, respectively. The current topology information for
cell c at time ¢ is denoted by x; . which is obtained from the
topology identification module, as explained in Section III-A.

Action space for the CLR agents: allF

T at,c
H A H L& D LD L
[pt,m qt,c? pt,c7 pt,c? qt,c7 pt,c]

CLR .__
Ot,c T

. where pt. and g}, denote the
power dispatch for the PV inverter set points, pf_ . 1s the power
charge/discharge for the BESS, p;fc and qfc are the power
dispatch for the fuel-based generators, pfc is the current load
restoration decision.

Observation space for the COR agent: of©F
(05 clece, Wiy, where oty = [‘pfl,c,p?’;?z,p?a,c
denotes the total DER generation, total critical load request
and total critical load restored in cell ¢ at t — 1, and w¢
denotes the switch status at previous time step.

[ER—

w

Action space for the COR agent: af %% := [w{ pf],
where w¢ are the switch status at time ¢ between all cells,

and p¢ are the power transfer among different cells.
Reward formulation. We define the total average reward
(TAR) at time ¢ for each agent as

YeeeTie +vre = A £%]

(0 + 1)

re = 2
where the last term A*¥|fP4| penalizes the power imbalance,
where | f}’jl| corresponds to (1g). Constraint (le) is enforced
by the OpenDSS simulator as a part of the Gym environment,
constraint (1j) is enforced by the COR agent, and the constraint
(1k) is enforced by the CLR action space design.

III. METHODOLOGY
A. Real-time Topology Identification

The topology information of each cell is never directly
observable. The only observable states are the voltage and
power measurements at each bus location. Therefore, to get
the current topology state for each cell x; ., we train a multi-
layer perceptron (MLP) on the extracted features from the
voltage and power measurements, as done in [10]. The main
idea is to extract the features that can capture the connection
relationships between any two nodes from the nodal voltage
and power measurements. We use the same three features as
used in [10] to train the MLP model:

1) Voltage correlation feature: The first feature is the

Pearson correlation coefficient of the voltage time-series

model between two nodes. The main idea is that the
nodes which are connected together have similar voltage
fluctuation profiles.

2) Voltage-drop fluctuation feature: The second feature
is the standard deviation of the voltage-drop time series
between any two connected nodes.

3) Power flow feature: The third feature is the coefficient
of determination between the power measurements of any
two adjacent nodes connected by a closed switch.

All three features are extracted from time-series data of the
nodal voltages and power measurements, which are then used
to construct the training, validation, and testing data. The
labels in the time-series data are either 1 or O, representing
close and open switch states, respectively. Finally, the trained
MLP model is used for real-time topology identification ;.

B. Handling Dynamic Action Space via Action Masking

One of the challenges stemming from the changing topology
in the load restoration problem is to handle the dynamic
action space due to disconnected DERs. Therefore, we propose
a topology-dependent action masking (TDAM) technique to
handle the dynamic action space for each of the CLR agents.
The main idea is that, in addition to storing states, actions,
rewards, and the next state in the replay buffer, we also pass
the next unavailable actions mask, denoted as M, . at time ¢
in cell c. This action mask is determined from the real-time
topology identification x;. described in Section III-A. For
example, if a CLR agent has 5 DERs at time step ¢, and if at
t+ 1, the fourth DER gets disconnected, the action mask will
change from [1,1,1,1,1] to [1,1,1,0,1], where 1 indicates
an active action, and O indicates the unavailable action. The
action mask information is then used by each of the CLR
agents to set the corresponding Q-value corresponding to the
action with the zero mask as negative infinity. Therefore, when
the actor maximizes the Q-function to find the optimal action,
the agent does not take the action with the zero mask. The
main advantage of using TDAM is that it prevents us from
handling different dimensions of the action space at different
time steps, which would require different policy networks for
each possible topology change.

C. Hierarchical Multi-Agent Reinforcement Learning

Now, we describe the overall learning architecture of
HMARL. We train both the CLR and COR agents using
MARL. The objective of MARL training is to search for a joint
policy parameter §** that maximizes the reward objective:

0% = argmax J(0)
fa

3)

)

= argemax Eat:Hz‘ezﬂ'gi (o;) [Z R(St, at, Mt,c)
teT

where M, . is the action mask at time ¢ for cell c. We follow
centralized-training and decentralized-execution (CTDE) for
the multi-agent learning as proposed in the MADDPG paper
[11]. The CTDE uses a central critic for the overall envi-
ronment instead of independent critics for each environment,
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TABLE II: Restored reward during testing for scenario S1

HMARLI HMARL2 HMARL3
Cell 1 load restored reward  0.391 0.387 0.397
Cell 2 load restore reward 0.214 0.282 0.301
Cell 3 load restored reward  0.257 0.451 0.544
Total load restored reward 0.862 1.120 1.242

55.. TABLE III: Restored reward during testing for scenario S2

o O B3 0 e e AMARLI HMARL2 HMARL3
@ 1 122 ; :SSNM 2g é & o® gz Cell 1 load restored reward  0.201 0.233 0.301
150 ° o 7 Cell 2 load restore reward ~ 0.360 0.350 0.453
© e Cell 3 load restored reward  0.461 0.451 0.480
— Cell1 Cell 2 Cell 3 == Tie Switch Sectionalizer Switch Total load restored reward ~ 1.022 1.034 1.234

x Topology contingency for testing g@ Topology contingency for training

Fig. 2: The modified IEEE-123 bus system.

TABLE I: DER and load details for the IEEE-123 bus system

oy ol Critical PV BESS F :ir';‘t‘;fd
M load (W) load (RW) (W) kWAWR) SO

760 340 330 220100 175

21075 240 390 180900 280

3 1100 295 300 240/1200 210

leading to a more accurate value function estimation. Central
critics have access to the observations and actions for all the
agents during training, i.e., Q; i€Emgi (o, ...,0"at,...,a").
Once the agents are trained using the central critic, local
control policies my: are plugged into agents for decentralized
execution with only local observations, o; .

IV. CASE STUDY

A. System Setup

We validate the effectiveness of the proposed HMARL
method on a modified IEEE-123 bus system with 2 tie-
switches and 8 sectionalizer switches. We model the dis-
tributed microgrid system using the OpenDSS simulator. First,
we divide the bus system into three cells, where the power
transfer can happen between each cell through sectionalizer
switches. The total number of loads in each cell are 23, 24,
and 28, respectively, and critical loads are 13, 21, and 18,
respectively. The number of BESS in each cell is 11, 8, and 10,
and the number of fuel generators is 5, 7, and 6, respectively,
where each DER is allotted sequentially to each bus in each
cell. We use an importance factor of z° = 1 to denote a critical
load and an z* = 0.1 to denote a non-critical load. Figure 2
shows the whole 123-bus system, with each cell denoted with
a different color of buses. We consider a 3-day load restoration
period, with a 15-minute control interval, making one episode
a total of 288 steps. Load and PV shapes are collected from
a real feeder located in western Colorado for the year 2022.

B. Training and Testing

We use MADDPG [11] for the HMARL training. Specif-
ically, we use the XuanCe [12] for training, an open-source
repository for MARL algorithm implementations. To simulate
the topology changes, we only consider the opening and clos-
ing of the tie/sectionalizer switches. We train the agent using
three different strategies: /) No topology change encountered

during training; 2) 1 topology change in cell 1 encountered at
fixed time step; 3) 1 topology change in cell 1 encountered
at random time steps. We denote each strategy as HMARLI,
HMARL2, and HMARL3, respectively. During training, we
only consider the sectionalizer switch between buses 3 and 5
going from close to open, thus disconnecting the loads and
DERs on buses 5 and 6 (yellow cross in Figure 2).

We test the agent in two scenarios: S1, where topology
changes occur at time steps 100 (switch 6 opens up) and 150
(switch 10 opens up), and S2, where the same changes occur
at time steps 50 and 200. Both contingencies take place in cell
3 (red crosses in Fig. 2).

Topology identification results. First, we report the de-
tection accuracy of the topology identification module trained
using the procedure described in Section III-A. The proposed
topology identification method is able to achieve 99.6% ac-
curacy on the test scenarios of predicting the switch states
as open or closed. Therefore, the trained MLP can be used
as a reliable estimator for switch status x; . in each cell to
determine the topology-dependent action masks M; ..

C. Simulation Results

The results of the restored load reward 7R for all three
methods for both scenarios S1 and S2 are shown in Table
II and III. We can observe that the HMARL3, where we
expose the RL agents to random time topology changes during
training, leads to a more generalizable policy that is able
to adapt better to an unseen topology change at the test
time for both S1 and S2. In Figure 3, we show the load
restoration performance for HMARL3, HMARLI, and the
HMARL without TDAM. We can see from Figures 3a, 3d,
and 3g that at time steps 100 and 150 for cell 3, the total
supplied load in kW starts dropping suddenly due to sudden
disconnection of the DERs. However, the COR agent helps
in power transfer between cell 2 and cell 3, as seen from the
decrease in the restored load in cell 2 after time steps 100 and
150. Moreover, all of the CLR agents maintain the critical load
demands in each of the cells. The HMARLI agent that did
not encounter any topology changes during training has worse
performance and is not able to adapt to the topology changes
during the test time (see Figures 3b, 3e, and 3h). We also show
the impact of training the agent without TDAM. We can see
from Figures 3c, 3f, and 3i, that the HMARL without TDAM
is not able to adapt to the topology changes at the test time,
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Fig. 3: The figures above show the load restoration performance in each of the three cells for HMARLS3 (proposed), HMARLI,
and without action masks for scenario S1. The red vertical lines show the topology change time steps in cell 3.

as seen from the critical load restoration performance after
time steps 100 and 150. The changed action space in one cell
drastically deteriorates the performance in all the cells. This
highlights the advantage of incorporating TDAM and the COR
agents for efficient critical load restoration.

V. CONCLUSION

We proposed a multi-agent hierarchical RL framework for
critical load restoration. The proposed method can adapt to the
topology changes in the distribution grid during the restoration
period. The main ideas were to split the system into different
cells and use real-time topology identification with action
masking to handle the continuously changing action space.
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