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Abstract

We propose the use of Large Language Mod-
els (LLMs) for generating statistically sup-
ported hypotheses from scientific literature. We
present a two-stage framework that effectively
leverages LLMs’ capacity to analyze vast litera-
ture and extract pertinent information to formu-
late evidence-based hypotheses. Our method
comprises two phases: 1) data extraction via
decomposed zero-shot prompting, and 2) hy-
pothesis generation by auto-formulating and
solving an optimization problem. We demon-
strate this framework in agricultural science,
where field data is particularly limited. This
paper illustrates how LLMs can be leveraged
to tap into the vast reservoirs of human knowl-
edge and serve as useful tools for knowledge
aggregation, synthesis, and recommendation.

1 Introduction

Large Language Models (LLMs) demonstrate use-
ful applications in scientific research, including as-
sisting in chemical synthesis (Zheng et al., 2023b)
and formulating hypotheses (Qi et al., 2023). This
paper introduces a novel application of LLMs as
scientific research agents, capable of generating
hypotheses with effect size measures (e.g., stan-
dardized mean differences (SMD)) and statistical
significance based on a corpus of scientific liter-
ature. Our methodology leverages a two-stage
framework inspired by meta-analysis (Glass, 1976),
a method essential for deriving robust statistical
conclusions from multiple studies. The proposed
approach is particularly relevant given that manual
meta-analyses are time-consuming, on average ex-
ceeding 1000 hours to complete (Allen and Olkin,
1999), thereby presenting a substantial bottleneck
in scientific progress.

The first stage of our framework utilizes decom-
posed zero-shot prompting (Khot et al., 2022) to
extract information from full-text articles and the
tables within, where valuable numerical data re-

sides. Yet existing LLM-based data extractions for
scientific articles focus only on abstracts (Kartch-
ner et al., 2023) and simple sentence-level infor-
mation (Polak and Morgan, 2023; Gilligan et al.,
2023; Zheng et al., 2023b).

The second stage generates hypotheses, formu-
lated as an optimization problem (Yang et al., 2023).
The LLM proposes, validates, and refines hypothe-
ses iteratively analogous to a scientist honing the-
ories per experimental observations. This process
is guided by counter-examples (Alur et al., 2013;
Madaan et al., 2023), aiming to improve the relia-
bility of generated hypotheses, which can be further
validated by human experts.

This paper addresses the gap in existing literature
on hypothesis generation, where they fall short in
producing hypotheses with quantifiable measures
of effect size and statistical significance (Qi et al.,
2023; Yang et al., 2023; Ciucă et al., 2023; Koneru
et al., 2023; Banker et al., 2023; Zhong et al., 2023).
Our framework enhances LLMs’ role in scientific
research by improving statistical analysis rigor in
hypothesis generation. It diverges from prior meth-
ods by fully leveraging LLMs for detailed statisti-
cal analysis, effectively tackling complex scientific
inquiries.

To demonstrate the effectiveness of our frame-
work, we conduct a case study in agricultural
science, utilizing a high-impact Nature publica-
tion (Pittelkow et al., 2015) as benchmark to show
LLMs’ potential of producing premier research.
Our contribution is poised to significantly reduce
the time and labor associated with traditional meta-
analyses while opening new avenues for LLMs in
scientific discovery.

2 Problem Formulation

Given an open-ended research question Q with
an effect size measure and a scientific corpus C,
which is manually curated or compiled through
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automatic criteria screening (Kusa et al., 2023; Al-
chokr et al., 2022), the goal is for the LLM to
propose a predicate A as the answer with statisti-
cally significant effect E derived from C, where a
predicate is a binary-valued function that outputs
True or False given an expression. Open-ended
research questions include inquiries like “When
does caffeine improve muscle strength?” quanti-
fied by SMD (Grgic et al., 2018). This task stands
in direct contrast to close-ended question answer-
ing (Zheng et al., 2023a) and zero-shot hypothesis
generation (Qi et al., 2023) by demanding not only
complex reasoning to generate hypotheses but also
statistical validation E supported by C. We contend
that hypotheses generated by LLMs should always
be supported by statistical evidence for better com-
munication and validation.

3 Case Study in Agricultural Science

3.1 Preliminaries

We consider Q as “When does zero tillage (ZT)
out-yield conventional tillage (CT)?” and C as
the references in (Pittelkow et al., 2015). Tillage
refers to the soil disturbance process before plant-
ing, with ZT omitting this step, unlike CT. GPT-4
serves as our LLM of choice to derive A and E.
The effect size is defined as ln(ZT yield

CT yield), represent-
ing the logarithm of the yield ratio between ZT and
CT for a comparable pair of treatments. A compa-
rable pair of treatments differ in as few variables as
possible to reduce confounding (see Appendix C
Subtask 7 for an example). Subgroup analysis aids
in examining effect size heterogeneity and a predi-
cate P can be used to characterize a subgroup GP .
Specifically, P (e) =True if and only if an element
e is in GP . Therefore, Q is answered by finding a
predicate such that the corresponding subgroup has
a positive average effect size, indicating ZT yield >
CT yield when all other variables are controlled for.
According to (Pittelkow et al., 2015), the subgroup –
dry climate, no irrigation, retained residue, crop
rotation demonstrates higher ZT yield. The objec-
tive of this study is thus using GPT-4 to answer Q
by extracting information and generating A.

3.2 Automated Information Extraction

Given a reference paper and all its tables in HTML,
GPT-4 identifies those containing numerical yields
for effect size calculation, thus excluding tables
with only irrelevant information such as rainfall
statistics. From the n relevant tables {T1, . . . , Tn},

GPT-4 enumerates the tillage treatments verbatim
in each table Ti, i ∈ [n]1, resulting in m treat-
ment names, {Ni,1, . . . , Ni,m}. Since the extracted
names are notations with no semantic meaning
when out of context, GPT-4 featurizes each raw
name Ni,j , j ∈ [m] into fi,j , extracting all relevant
features such as the treatment description and the
crop type. Among the extracted features, the ge-
ographical information determines the climate by
consulting the WorldClim database (Zomer et al.,
2022). These features are automatically compiled
by GPT-4 given Ti and the methods section of
the reference. With the extracted and featurized
data, GPT-4 generates a list of ℓ comparable pairs
{Pi,1, . . . , Pi,ℓ} to minimize confounding. Each
Pi,k, k ∈ [ℓ] consists of (f−

i,k, f
+
i,k), representing

the ZT and CT treatments. Finally, each featurized
name selected for pairing is standardized by GPT-4
according to a predefined JSON template so that
each pair Pi,k is written as a row for analysis (see
Appendix C for an example).

Table 1 shows the rows of reference 103 of the
extracted and expert-curated database (Pittelkow
et al., 2015). Note that the number of rows for
each reference is variable and unknown, in con-
trast to simpler data extractions (Kartchner et al.,
2023). The effect size of each row is calculated
by parsing the numerics from ZT yield and CT
yield. For each row u produced by GPT-4 of a
reference x, we calculate the absolute difference
of the effect size with each row v of reference x in
the expert-curated database, denoted by ∆u(v). If
minv ∆u(v) is smaller than a threshold of 0.01, u is
defined to be matched with argminv ∆u(v). One
row in the expert-curated database is matched at
most once. Furthermore, define true positives (TP)
as extracted rows that are matched, false positives
(FP) as extracted rows that are not matched, and
false negatives (FN) as rows in the expert-curated
database not matched by any extracted rows. We
also define precision = TP

TP+FP and recall = TP
TP+FN .

For true positives, we calculate the accuracy of
each feature by dividing the number of exact string
matches by the number of true positives. To do this,
we manually create a set of rules to map semanti-
cally equivalent keywords. For instance, (“maize”,
“corn”) for crop type. Except for country and lo-
cation, the climate is first determined, followed by
exact string matching of the climate.

Out of the 610 references, 224 are extracted,

1[n] denotes the set {1, 2, · · · , n}
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Table 1: Rows of reference 103 in extracted and expert-curated database (Pittelkow et al., 2015). (* -
uncontrolled.) TP, FP, FN are respectively 2,1,0 since the second and third GPT-4 extracted rows are matched.
Precision and Recall are 67% and 100%. Accuracies(%) of Crop, Irrigation, Rotation, Residue, and Climate (all
mapped to “Dry") are respectively, 50, 100, 100, 0, 100.

ID Country Location Crop Type Irrigation Rotation Residue CT yield ZT yield Effect Size
GPT-4 Extracted Database

103 Argentina Anguil Experimental Station Oat + hairy vetch no yes * 970kg ha−1 1500kg ha−1 0.44
103 Argentina Anguil Experimental Station Corn no yes * 6140kg ha−1 8160kg ha−1 0.28
103 Argentina Anguil Experimental Station Wheat no yes * 2600kg ha−1 3340kg ha−1 0.25

Expert-Curated Database

103 Argentina
Semiarid Pampean Region,

Anguil Experimental Station maize no yes retained 6140 8160 0.28

103 Argentina
Semiarid Pampean Region,

Anguil Experimental Station maize no yes retained 2600 3340 0.25

Table 2: Extraction results by GPT-4 averaged across 224 references. (* - uncontrolled.)

Crop Type Irrigation Rotation Residue Climate Avg Precision Avg Recall
Type Multi-Class/* Yes/No/* Yes/No/* Retained/Removed/* Dry/Humid/*

62.18% 72.15%Avg Accuracy 82.44% 76.66% 69.19% 38.63% 87.72%

with the rest inaccessible, not digitized, or the nu-
merical yields not reported in tables but likely in
figures, as indicated by GPT-4’s inability to find
relevant tables (i.e., n = 0). The GPT-4 extracted
database has 2604 rows and the expert-curated
database has 2737 rows. As shown in Table 2,
residue management has the lowest extraction ac-
curacy, often because it is not explicitly stated, re-
quiring inference from the text. Moreover, GPT-4
is biased towards f+

i,k removing residue and f−
i,k

retaining residue because it thinks the disturbance
of soil incorporates the residue, removing residue
from the surface. When f+

i,k and f−
i,k differ on a

feature, it indicates an uncontrolled variable be-
tween the compared treatments and is indicated by
* as shown in Table 1. This can potentially be mit-
igated by an LLM with more agriculture domain
knowledge. The requirement of document-level
understanding and domain knowledge to correctly
extract residue management illustrates the difficulty
of information extraction in academic papers.

3.3 Hypothesis Generation

For hypothesis generation, the goal is to find a pred-
icate P such that the corresponding subgroup GP

has a positive average effect size given a signifi-
cance level α. This is formulated as an optimization
problem where GPT-4 iteratively proposes predi-
cates, maximizing the average effect size of GP .
To account for increased false discoveries in mul-
tiple hypothesis testing, we apply Bonferroni cor-
rection (Haynes, 2013) to guarantee Type I error
below α.

3.3.1 LLM as an Optimizer

The database S is first partitioned into S− and
S+, which are rows with effect sizes smaller and
greater than 0 respectively. By contrasting S− with
S+ in the prompt, GPT-4 is asked to propose a
predicate P0 under λ words so that rows satisfy-
ing P0 have a positive average effect size. In par-
ticular, λ is set to 15 as a regularization to avoid
trivial predicates. GPT-4 is then asked to generate
a Python function that takes a row Ri as an argu-
ment and returns P0(Ri), which forms a subgroup
G0 := {Ri|P0(Ri) = True, ∀Ri ∈ S}. P0 is as-
sessed by calculating the average effect size ES0

and the p-value p0. Specifically, ES0 is estimated
through bootstrapping and p0 is computed by the
randomization test (see Appendix A for details).

For i ≥ 0, GPT-4 is asked to propose a new
predicate Pi+1 aimed at maximizing ESi+1 and
minimizing pi+1. This is achieved by refining all
predicates proposed in the past Pj ,∀j ≤ i. To-
ward this goal, we collect negative (CN−

j ) and
positive (CN+

j ) counterexamples of Pj , which are
respectively rows that satisfy Pj but with an effect
size smaller than ESj , and rows that do not satisfy
Pj but with an effect size larger than ESj . The
exclusion of some negative counterexamples and
the inclusion of some positive counterexamples
would have increased ESi. Also, we collect nega-
tive (CR−

j ) and positive correct examples (CR+
j ),

which are rows with effect sizes smaller than ESj

that do not satisfy Pj and rows with effect sizes
larger than ESi that satisfy Pj . In the prompt, we
list the history of proposed predicates Pj , average
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Table 3: Predicates Pi, average effect size ESi and p-value pi of subgroup Gi on GPT-4 extracted and
expert-curated databases. P ∗ for each database is in bold.

i Pi ESi(%) pi

GPT-4
Extracted
Database

0G crop rotation is yes and irrigated is no and climate is dry 12.98 0.0
1G crop rotation is yes and irrigated is no and climate is dry and residue management is retained 10.14 0.0
2G crop rotation is yes and irrigated is no and climate is dry 12.93 0.0
3G crop rotation is yes and irrigated is no and climate is dry 12.91 0.0
4G crop rotation is yes and irrigated is no and climate is dry 12.93 0.0

Expert
Curated
Database

0E residue management is retained and climate is dry 3.11 0.0168
1E residue management is retained, climate is dry, crop rotation is yes 7.12 0.0
2E residue management is retained, climate is dry, irrigated is no 7.09 0.0004
3E residue management is retained, climate is dry, irrigated is no, crop rotation is yes 13.39 0.0
4E residue management is retained, climate is dry, irrigated is no, crop rotation is yes 13.51 0.0

Algorithm 1 Hypothesis Generation
Inputs: S−, S+, t, α, Regularization λ
Output: Final predicate P ∗

1: P0 ← Prompt LLM for predicate within λ words by
contrasting S− with S+

2: Calculate G0, ES0, p0
3: for i = 0, 1, . . . , t− 1 do
4: Collect CN−

i , CN+
i , CR−

i , CR+
i

5: Pi+1 ← Prompt LLM for predicate within λ words by
looking at Pj , ESj , pj and contrasting CN−

j , CN+
j ,

CR−
j , CR+

j , ∀j ≤ i
6: Calculate Gi+1, ESi+1, pi+1

7: end for
8: α′ ← α

t // Bonferroni Correction
9: P ∗ ← Pk, where k = argmax

i:pi≤α′
{ESi}

10: return P ∗

effect sizes ESj , and p-values pj , ∀j ≤ i, and
ask GPT-4 to contrast samples of CN−

j , CN+
j and

CR−
j , CR+

j to come up with a refined predicate
Pi+1. Examples for each j are uniformly sampled
to fit within the context window (see Appendix
D for prompting templates). Once the predefined
hypothesis budget t is reached, we apply Bonfer-
roni correction and divide α by t. The predicate
with the largest effect size and a p-value below the
Bonferroni-adjusted significance level is selected
as the final output, as detailed in Algorithm 1.

Theorem 1. Given P ∗, the result of Algorithm 1,
and significance level α, the probability that the
proposed answer A = P ∗ is false is bounded by α.

Proof. See Appendix B.

Given that Bonferroni correction divides α by t,
careful selection of t is crucial to balance the risk
of Type II errors.

3.3.2 Results and Discussion
In Table 3, we show the predicates proposed during
optimization and the selected P ∗ using our GPT-
4 extracted and expert-curated databases. Hence-
forth, we report back-transformed effect sizes in

percentage yield change: ZT yield
CT yield − 1. Our frame-

work reproduces the answer to the research ques-
tion mentioned in Sec.3.1 when using the expert-
curated database (P4E). Although P0G does not
ultimately reproduce P4E , it correctly characterizes
3 out of 4 features, except for the residue manage-
ment. This difference is attributed to the low extrac-
tion accuracy of “Residue” as mentioned in Sec.3.2.
Note that during the optimization on the GPT-4
extracted database, P1G reproduces P4E but was
discarded due to a smaller average effect size. We
thus also tested P0G on the expert-curated dataset,
yielding ES = 13.03% and p = 0. This indicates
that there is little heterogeneity in residue retention
and removal, the marginalization of which makes
little difference.

As an additional experiment, we queried GPT-
4 without providing access to GPT-4 extracted
or expert-curated database but only the feature
names. It proposes “irrigated, humid climate,
residue retained, crop rotation yes”, which results
in ES = −2.9 and p = 0.94 on the expert-curated
database, emphasizing the importance of literature
access for generating scientifically valid hypothe-
ses (see Appendix E for details).

4 Conclusion

We introduced the application of LLMs for address-
ing open-ended research questions and developed
a two-stage framework that effectively leverages
statistical evidence, ensuring the Type I error of the
generated hypothesis remains under the prescribed
threshold. The presented case study illustrated this
framework’s ability to parse scientific literature and
formulate evidence-based hypotheses. This paper
underscores the promising role of LLMs in scien-
tific inquiry, encouraging further exploration and
adoption of automated approaches across various
disciplines.
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5 Limitations

While our study demonstrates GPT-4’s capability
of correctly answering the question, “When does
ZT outyield CT?” using an expert-curated database,
it’s important to note certain limitations. First, we
cannot verify whether GPT-4’s pre-training dataset
includes our benchmark (Pittelkow et al., 2015),
as it does not provide token probabilities for mem-
bership inference (Shi et al., 2023). Additionally,
biases within GPT-4, as discussed in Sec.3.2 and
Sec.3.3.2, could lead to biased or unfounded hy-
potheses. Finally, the effectiveness of our approach
in domains other than agricultural science remains
uncertain, calling for further validation to confirm
GPT-4’s domain-specific knowledge and hypothe-
sis generation capability across different fields.

6 Ethics Statement

In conducting this research, we have adhered to the
ethics policy, particularly in the acquisition of the
references mentioned in the benchmark (Pittelkow
et al., 2015). All references included were obtained
directly from the publishers, ensuring compliance
with copyright laws and academic integrity guide-
lines.
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A Bootstrapping and Randomization Test

The average effect size ESG of a subgroup G is
estimated through bootstrapping. The procedure
goes as follows. Randomly sample a set of rows Si

from G with replacement so that |Si| = |G|. Then
calculate the average effect size of the rows in Si.
We get ESG by repeating this process for q times
and averaging the results.

The p-value of ESG is then calculated using the
randomization test. The null hypothesis in the ran-
domization test assumes that there is no difference
between ZT yield and CT yield of a row in G, sug-
gesting that the observed ESG is merely by chance.
The alternative hypothesis is that ZT yield > CT
yield. To test this, the method randomly inverts
the sign of each row’s effect size in G. Following
this, the average effect size of these sign-flipped
values is computed and then compared with ESG.
This process is repeated q times and the proportion
of instances where ESG exceeds the average of
these randomized effect sizes serves as the p-value,
indicating the statistical significance of ESG. In
our implementation, q is set to 4999.

B Proof of Theorem 1

Let G0, · · · , Gt−1 be the set of proposed sub-
groups, (H0i, H1i) be the pair of null and alter-
native hypotheses associated with each subgroup
Gi, pi be the p-value, and ESi be the average effect
size. Given significance level α, the Bonferroni-
corrected α′ = α

t and predicate Pk, where k =
argmaxi:pi≤α′{ESi}. Assume that H0k is true,
then the probability that our answer A = Pk is
false is Pr(pk ≤ α′).

Pr(pk ≤ α′) ≤ Pr
(⋃t−1

i=0 (pi ≤ α′)
)

≤
∑t−1

i=0 Pr (pi ≤ α′)
= tα′

= α

(1)
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C Information Extraction Example

In the following, we show the prompts and responses in extracting reference 642 in (Pittelkow et al.,
2015).

Subtask 1. This template is applied to all 4 tables in reference 642 to prune those with no numerical
yields. We show the prompt and response of table 1. The words in brown are replaced with the
corresponding tables and abstract of the reference.

Prompt: You read the abstract of a paper and one of its tables at a time to check if the table satisfies
the following condition. Does the table contain the actual numerical yields (unit: weight/area) of at
least one zero/no tillage treatment and one with-tillage treatment? Note that sometimes zero tillage
is equivalently called no-till and with-tillage treatment is equivalently called conventional tillage or
simply tillage, in contrast with the conservational agriculture practice. Zero tillage is sometimes
abbreviated as ZT or NT, and with-tillage treatment is sometimes abbreviated as CT, standing for
conventional tillage. Note that some tables only contain the statistical analyses (e.g. root mean
square error) of the yields but not the actual yields. Pay attention to the caption for the nature of the
table. If the actual yields of zero tillage and with-tillage are in the table, list the treatment names
verbatim in a JSON object. e.g.,
{‘methods’:[NT, MM, MR, MC, CT]}.
If not, output an empty list, i.e.,
{‘methods’: []}
Table 1 Effect of the various treatments on weed cover rate and weed dry biomass <...omitted...>
Abstract Using mulch to tackle the problems of soil <...omitted...>

Response:
{‘methods’: []}

Subtask 2. This template is applied to the result of subtask 1, which resulted in a non-empty list
only on table 2 after running on all 4 tables. That is, n = 1 and the list of relevant tables is [T2].
Therefore, we show the prompt and response of only table 2 in this subtask. The words in brown
are replaced with the corresponding table when used for other references.

Prompt: List the name of the tillage treatments in the table verbatim if their numerical yield data
are available. Output a JSON object
{‘methods’:[treatment1, treatment2, ...]}
Note that some tables contain only numerical analyses of the yield data instead of the actual yield
data. In this case, output a JSON object with an empty list
{‘methods’:[]}
Table 2 Effect of treatments on N input, N uptake and N use efficiency <...omitted...>

Response:
{‘methods’:[‘vT-1/2F’, ‘vZ-1/2F’, ‘vZ-0F’, ‘fT-1F’, ‘fZ-1F’, ‘fT-0F’]}

Subtask 3. This template is applied to the result of subtask 2. We show the prompt and response of
featurizing the first treatment, ‘vT-1/2F’. The words in brown are replaced accordingly.

Prompt: Given the provided text and table, answer the following for each treatment of ‘vT-1/2F’
in the table. Ignore the following methods ‘vZ-1/2F’, ‘vZ-0F’, ‘fT-1F’, ‘fZ-1F’, ‘fT-0F’.
(i) brief description of the treatment as described in the text
(ii) weights of yields as shown in the table. Ignore other metrics.
(iii) crop type whose yield is measured.
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(iv) crop part whose yield is measured.
Use a dictionary if the table contains multiple treatments of ‘vT-1/2F’. e.g.,
{‘tillage description’: ‘answer’,
‘treatment names’:{‘X’, ‘Y’},
‘yields’: {‘X’: {‘2002’: ‘5.3 Mg ha -1’, ‘crop type’:‘ans’,

‘crop part’:‘ans’},
‘Y’: {‘2002’: ‘4.5 Mg ha -1’, ‘crop type’:‘ans’,

‘crop part’:‘ans’}}}
Sometimes, yields of individual years are unavailable. Only average yields are available, in that
case, use avg (year start-year end) to denote. e.g.,
{‘tillage description’: ‘answer’,
‘treatment names’:{‘X’},
‘yields’: {‘X’: {‘avg(1995-2000)’: ‘1.9 Mg ha -1’, ‘crop type’:‘ans’,

‘crop part’:‘ans’}}}
Replace ‘X’, ‘Y’ with actual treatment names and ‘ans’ with answers. Format your answer in
JSON.
Table 2 effect of treatments on N input, N uptake and N use efficiency <...omitted...>
MATERIAL AND METHODS Site description and experimental design The present <...omitted...>

Response:
{‘tillage description’: ‘Hairy vetch with conventional tillage and half the

recommended fertilization’,
‘treatment names’: {‘vT-1/2F’: {‘yields’:

{‘vT-1/2F’: {‘2005’: ‘5.038 Mg ha -1’,
‘crop type’: ‘maize’,
‘crop part’: ‘kernel’}}}}}

Subtask 4. This template is applied to the result of subtask 3. We show the prompt and response of
continuing featurization of ‘vT-1/2F’. Residue management requires more instructions due to its
complexity. The words in brown are replaced accordingly.

Prompt: Given a JSON object, which is extracted from the given text and table, answer whether
residue is retained or not for each treatment of ‘vT-1/2F’ in the JSON object. Ignore the following
methods ‘vZ-1/2F’, ‘vZ-0F’, ‘fT-1F’, ‘fZ-1F’, ‘fT-0F’. Use a dictionary if the table contains
multiple treatments of ‘vT-1/2F’. e.g.,
{‘residue’: {‘treatment1’: ‘retained’, ‘treatment2’: ‘removed’},
‘reasoning’:‘answer’}.

Reason by considering the following questions. Is there cover crop or crop rotation? What is
the weed control strategy? What is the treatment of the residue of crop and weed? If burned,
incorporated into the soil, grazed, or removed, then residue is removed. If left on the surface, then
residue is retained. Is there artificial or natural mulching? Mulching indicates retention, while
explicit statement of no-mulch indicates removal. Important note: conventional tillage does NOT
always incorporate residue into the soil. It is possible to retain residue for conventional tillage.
Answer ‘not specified’ if not inferrable’
{‘tillage description’: ’Hairy vetch with conventional tillage <...omitted...>
Table 2 effect of treatments on N input, N uptake and N use efficiency <...omitted...>
MATERIAL AND METHODS Site description and experimental design The present <...omitted...>

Response:
{‘residue’: {‘vT-1/2F’: ‘removed’},
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‘reasoning’: ‘The treatment ‘vT-1/2F’ involved hairy vetch with
conventional tillage and half the recommended fertilization. According
to the text, for the ‘vT-1/2F’ treatment, the hairy vetch biomass was
incorporated through tillage before maize sowing. Incorporation of the
biomass into the soil through tillage indicates that the residue is not
left on the surface but is instead mixed into the soil, which means the
residue is removed.’}

Subtask 5. This template is applied to the result of subtask 3. We show the prompt and response of
continuing featurization of ‘vT-1/2F’. The words in brown are replaced accordingly.

Prompt: Given a JSON object, which is extracted from the given text and table, answer the
following for each treatment of ‘vT-1/2F’ mentioned in the JSON object. Ignore the following
methods ‘vZ-1/2F’, ‘vZ-0F’, ‘fT-1F’, ‘fZ-1F’, ‘fT-0F’. Use a dictionary if there are multiple
treatments, e.g.
‘irrigated’: {‘site A’: ‘yes’, ‘site B’: ‘no’}.
(i) Irrigated or not (identify first whether irrigation is described. If not, but rainfall is stated, answer
no since it is probably rainfed; otherwise, ’not specified’ if not inferrable).
(ii) Crop rotation or not (identify first whether crop rotation is described. If there is no mention of
cover crops or crop rotation, there is probably no rotation).
(iii) Location.
(iv) Country.
{‘tillage description’: ‘Hairy vetch with conventional tillage <...omitted...>
Table 2 Effect of treatments on N input, N uptake and N use efficiency <...omitted...>
MATERIAL AND METHODS Site description and experimental design The present <...omitted...>

Response:
{‘vT-1/2F’: {‘irrigated’: ‘no’, ‘crop rotation’: ‘yes’,

‘location’: ‘Ishigaki Island’, ‘country’: ‘Japan’}}

Subtask 6. This template is applied to the result of subtask 3, 4, and 5. We show the prompt
and response of merging the features of ‘vT-1/2F’. The structures and keys of the resultant JSON
objects from subtasks 3, 4, and 5 are variable, making it impossible to merge with a hard-coded
program. The words in brown are replaced according to the treatment being featurized.

Prompt: Merge these JSON objects into one JSON object ignoring the reasoning fields:
{‘tillage description’: ‘Hairy vetch with conventional tillage and half the

recommended fertilization’,
‘treatment names’: {‘vT-1/2F’: {‘yields’:

{‘vT-1/2F’: {‘2005’: ‘5.038 Mg ha -1’,
‘crop type’: ‘maize’,
‘crop part’: ‘kernel’}}}}}

{‘residue’: {‘vT-1/2F’: ‘removed’},
‘reasoning’: ‘The treatment ‘vT-1/2F’ involved hairy vetch with

conventional tillage and half the recommended fertilization. According
to the text, for the ‘vT-1/2F’ treatment, the hairy vetch biomass was
incorporated through tillage before maize sowing. Incorporation of the
biomass into the soil through tillage indicates that the residue is not
left on the surface but is instead mixed into the soil, which means the
residue is removed.’}
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{‘vT-1/2F’: {‘irrigated’: ‘no’, ‘crop rotation’: ‘yes’,
‘location’: ‘Ishigaki Island’, ‘country’: ‘Japan’}}

Response:
{‘tillage description’: ‘Hairy vetch with conventional tillage and half the

recommended fertilization’,
‘treatment names’: {
‘vT-1/2F’: {‘yields’: {‘vT-1/2F’: {‘2005’: ‘5.038 Mg ha -1’,

‘crop type’: ‘maize’, ’crop part’: ‘kernel’}}}},
‘residue’: {‘vT-1/2F’: ‘removed’},
‘vT-1/2F’: {
‘irrigated’: ‘no’,
‘crop rotation’: ‘yes’,
‘location’: ‘Ishigaki Island’,
‘country’: ‘Japan’}}

Subtask 7. This template is applied to the result of subtask 6. Once all treatments [‘vT-1/2F’,
‘vZ-1/2F’, ‘vZ-0F’, ‘fT-1F’, ‘fZ-1F’, ‘fT-0F’] are fully featurized, the following prompt pairs
comparable treatments to minimize confounding. The words in brown are replaced accordingly.

Prompt: You are conducting a meta-analysis on the effects of tillage on yields. You read the
extracted experiment settings from a paper and:
Pick exactly one tillage method representing the least soil disturbance (typically no-till or zero
till), named T1 in the following, and one tillage method representing the greatest soil disturbance,
(typically conventional tillage), named T2 in the following. Ignore other reduced tillage methods,
such as minimum tillage, moderate tillage, etc. Do not count them.
T1 and T2 are paired so that they have as many similar variables as possible excluding the yields.
There may be multiple pairs. Output in JSON your reasoning and the NUMERICAL indices of
pairings.
Importantly, an index is only allowed to be paired once hence some variations might be left unpaired.
For example, given
[index 0: no-till without mulch, index 1: reduced tillage with mulch,
index 2: CT with mulch, index 3: CT without mulch]

i.e.,
{‘reasoning’:‘No-till and CT are picked as T1 and T2. Then, variations are

identified, i.e., 0, 2, and 3. However, since indices are only allowed to
be paired once, only (0, 3) is produced’, ‘pairs’:[{‘T1’:0, ‘T2’:3}]}.

A counterexample, given
[index 0: ZT, zero tillage, more info: {ZT_mulch, ZT_no_mulch},
index 1: CT, conventional tillage], more info: {CT_mulch, CT_no_mulch}.

Output
{‘reasoning’: ‘answer’,
‘pairs’:[{‘T1’:‘ZT_mulch’, ‘T2’:‘CT_mulch’},

{‘T1’:‘ZT_no_mulch’, ‘T2’:‘CT_no_mulch’}]}.
This is disallowed because the values of ‘T1’, ‘T2’ must be numerical indices. Instead, output
{‘reasoning’: ‘answer’, ‘pairs’:[{‘T1’:0, ‘T2’:1}]}
Index 0: {‘tillage description’: ‘Hairy vetch with conventional tillage and half the <...omitted...>
Index 1: {‘tillage description‘: ’Hairy vetch with zero tillage and half the <...omitted...>
<...omitted...>
Index 5: {‘tillage description’: ‘Natural fallow with conventional tillage and <...omitted...>
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Response:
{‘reasoning’: ‘T1 is chosen as the tillage method with the least soil

disturbance, which is zero tillage (ZT), and T2 is chosen as the tillage
method with the greatest soil disturbance, which is conventional tillage (
CT). The pairings are made by matching the treatments with similar
variables such as fertilization levels, residue management, irrigation,
crop rotation, location, and country, while excluding the yields. The
pairs are (1, 0) and (4, 3) because they have matching variables except
for the tillage method and yields. Index 2 and 5 are not paired because
there are no corresponding ZT treatments with no fertilizer supply to
match with CT treatments.’,

‘pairs’: [{‘T1’: 1, ‘T2’: 0}, {‘T1’: 4, ‘T2’: 3}]}

Subtask 8. This template is applied to the result of subtask 7. All treatments selected for pairing
are standardized by this subtask. We show the standardization of ‘vT-1/2F’. The words in brown
are replaced accordingly with the treatment to be standardized.

Prompt: Standardize the following experiment setting into a list of JSON objects with fixed and
predefined fields. The value of the ‘yields’ field is a single-level dictionary, in which the numerical
yields are values indexed by keys. Ignore other metrics than yields. All fields correspond to one
value except for ‘yields’, which corresponds to a single-level dictionary. Therefore, sometimes it is
required to split the setting into multiple JSON object(s) to follow the format when location, crop
type, residue management, etc., have multiple values. For example, a setting with locations Iowa
and Wisconsin is split into two JSON objects as follows,
{‘objects’:[{‘tillage method’: ‘ZT’,

‘residue management’: ‘removed’, ‘irrigated’:‘no’,
‘crop rotation’:‘yes’, ‘crop type’:‘wheat’,
‘crop part’:‘grain’, ‘location’:‘Iowa’, ‘country’:‘USA’,
‘yields’:{‘1999’:‘3000 kg ha -1’, ‘2000’:‘3100 kg ha -1’}},
{‘tillage method’: ‘ZT’,
‘residue management’: ‘removed’, ‘irrigated’:‘no’,
‘crop rotation’:‘yes’, ‘crop type’:‘wheat’,
‘crop part’:‘grain’, ‘location’:‘Wisconsin’, ‘country’:‘USA’,
‘yields’:{‘1999’:‘3300 kg ha -1’, ‘2000’:‘3000 kg ha -1’}}]}

On the other hand, the following is disallowed,
{‘objects’:[{‘tillage method’: ‘ZT’, ‘residue management’: ‘removed’,

‘irrigated’:‘no’, ‘crop rotation’:‘yes’,
‘crop type’:‘wheat’, ‘crop part’:‘grain’,
‘location’:‘Iowa and Wisconsin’, ‘country’:‘USA’,
‘yields’:{‘1999’:{‘Iowa’:‘3000 kg ha -1’,

‘Wisconsin’:‘3300 kg ha -1’},
‘2000’:{‘Iowa’:‘3100 kg ha -1’,

‘Wisconsin’:‘3000 kg ha -1’}}]}}
Because ‘location’ corresponds to two values and ‘yields’ corresponds to a two-level dictionary.
Experiment setting to standardize:
{‘tillage description’: ‘Hairy vetch with conventional tillage and half the <...omitted...>

Response:
{‘objects’: [{‘tillage method’: ‘conventional’,

‘residue management’: ‘removed’,
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‘irrigated’: ‘no’, ‘crop rotation’: ‘yes’,
‘crop type’: ‘maize’, ‘crop part’: ‘kernel’,
‘location’: ‘Ishigaki Island’, ‘country’: ‘Japan’,
‘yields’: {‘2005’: ‘5.038 Mg ha -1’}}]}

Subtask 9. This subtask is achieved by a hard-coded python program that writes a pair of
standardized JSON objects into a row. We show the example of the paired treatments (‘vZ-1/2F’,
‘vT-1/2F’).

Input:
{‘objects’: [{‘tillage method’: ‘zero tillage’,

‘residue management’: ‘retained’,
‘irrigated’: ‘no’, ‘crop rotation’: ‘yes’,
‘crop type’: ‘maize’, ‘crop part’: ‘kernel’,
‘location’: ‘Ishigaki Island’, ‘country’: ‘Japan’,
‘yields’: {‘2005’: ‘4.215 Mg ha -1’}}]}

{‘objects’: [{‘tillage method’: ‘conventional’,
‘residue management’: ‘removed’,
‘irrigated’: ‘no’, ‘crop rotation’: ‘yes’,
‘crop type’: ‘maize’, ‘crop part’: ‘kernel’,
‘location’: ‘Ishigaki Island’, ‘country’: ‘Japan’,
‘yields’: {‘2005’: ‘5.038 Mg ha -1’}}]}

Output:
{‘2005’ :

[‘country’: ‘Japan’, ‘location’: ‘Ishigaki Island’,
‘residue management’: ‘*’, ‘irrigated’: ‘no’,
‘crop rotation’: ‘yes’, ‘crop type’: ‘maize’,
‘ZT yield’: ‘4.215 Mg ha -1’, ‘CT yield’: ‘5.038 Mg ha -1’]}

D Hypothesis Generation Template

In the following, we show the templates of the prompts for hypothesis generation.

Template 0. This template prompts GPT-4 for an initial predicate when no predicate has been
proposed. Experiments are sampled until the context window fills up as shown in brown.

Prompt: You are investigating why in some scenarios; zero tillage yields more than conventional
tillage. You look across different experiments published in the literature to generate one predicate
‘P’ that defines the subgroup with maximum mean effect size and minimum p-value. The effect
size is defined as the natural log of the ratio of zero tillage yield to conventional tillage yield. The
p-value is calculated using randomization test. In the following, the experiment settings and their
effect sizes are provided in two distinct groups. In group 1, each experiment has an effect size
greater than 0. In group 2, each experiment has an effect size smaller than 0. Formulate your
predicate P so that the average effect size of the set of experiments satisfying P is maximized and
its p-value minimized. You should output one JSON object without explanations. The following
are some examples.
Example 1. {‘P’:’fertilization is applied’} (This means that the experiments satisfying ‘fertilization
is applied’ has the maximum effect size compared with other predicates and with minimum p
value.)
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Example 2. {‘P’:‘crop type is yam’} (This means that the experiments satisfying ‘crop type is yam’
has the maximum effect size compared with other predicates and with minimum p value.)
Importantly, P must be within 15 words. Note that all experiments compare yields of zero-tillage
with conventional tillage. Therefore, whether zero-tillage is applied should not be a part of your
proposed predicate.
Group 1: experiments with positive effect size
{‘country’: ‘Spain’, ‘location’: ‘Cordoba’, ‘crop type’: ‘bean’, ...
{‘country’: ‘Nigeria’, ‘location’: ‘Owo’, ‘crop type’: ‘cocoyam’, ...
<...omitted...>
Group 2: experiments with negative effect size
{‘country’: ‘Brazil’, ‘location’: ‘Parana’, ‘Londrina’, ‘Embrapa Soybean’ ...
{‘country’: ‘Chile’, ‘location’: ‘Antumapu’, ‘crop type’: ‘wheat’, ...
<...omitted...>

Template 1. This template prompts GPT-4 for predicate P2 given predicates P0 and P1. The brown
words are replaced accordingly. The prompt for Pi, i > 2 is constructed similarly by appending
descriptions of Pj , j < i and the corresponding samples of correct examples and counterexamples.

Prompt: You are investigating why in some scenarios; zero tillage yields more than conventional
tillage. You look across different experiments published in the literature to generate one predicate
‘P’ that defines the subgroup with maximum mean effect size and minimum p-value. The effect
size is defined as the natural log of the ratio of zero tillage yield to conventional tillage yield. The
p-value is calculated using randomization test.
Your initial predicate was P=P0. The mean effect size of the experiments satisfying P is ES0, and
the p-value is p0.

Correct examples and counterexamples of P0

The following are experiments with effect sizes greater than ES0 and do satisfy P=P0, which
means the inclusion of these experiments increases the mean.
{‘country’: ‘China’, ‘location’: ‘Gansu, Dingxi Experiment ...
<...omitted...>
The following are experiments with effect sizes smaller than ES0 and do not satisfy P=P0,
which means the exclusion of these experiments increases the mean.
{‘country’: ‘Argentina’, ‘location’: ‘Buenos Aires province ...
<...omitted...>
The following are counterexamples with effect sizes greater than ES0 but do not satisfy
P=P0.
{‘country’: ‘USA’, ‘location’: ‘Texas, Etter ...
<...omitted...>
The following are counterexamples with effect sizes smaller than ES0 but do satisfy P=P0.
{‘country’: ‘USA’, ‘location’: ‘Montana, Culbertson’...
<...omitted...>

Then, you refined P to become P1. The mean effect size of the experiments satisfying P is ES1,
and the p-value is p1.

Correct examples and counterexamples of P1

<...omitted...>
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To maximize the mean and minimize the p-value further, can you propose a refined predicate
considering the counterexamples mentioned? Importantly, the refined predicate should not be
longer than 15 words. Note that all experiments compare yields of zero-tillage with conventional
tillage. Therefore, whether zero-tillage is applied or not should not be a part of your proposed
predicate. Output in JSON format as follows. {‘P’:‘<your refined predicate>’}

Template 3. This template prompts GPT-4 to translate a natural-language predicate P into a python
function. The words in brown are replaced according to the predicate being translated.

Prompt: You translate a natural language predicate P into a Python lambda function whose input
is a dictionary and output is the evaluation of P.
The possible keys in the input dictionary include the following. However, a key may be absent, so
please check whether the key is in the dictionary:
‘country’, ‘location’, ‘crop type’, ‘climate’, ‘crop rotation’, ‘residue management’, and ‘irrigated’
For example, P=‘crop type is maize’ and the corresponding Python lambda function is
lambda obj: True

if ’crop type’ in obj and obj[’crop type’] == ’maize’ else False
Translate the following predicate and output in JSON: {‘lambda function’:‘answer’}
crop rotation is yes and irrigated is no and climate is dry

E Hypothesis Generation Without Data

The following shows the prompt of asking GPT-4 to generate a hypothesis without access to any
databases.

Prompt: You are analyzing in what situation, zero tillage yields more than conventional tillage.
The following are the variables considered.
Country: multi-class, uncontrolled
Location: multi-class, uncontrolled
Crop type: multi-class, uncontrolled
Irrigated: yes, no, uncontrolled
Climate: humid, dry, uncontrolled
Residue: retained, removed, uncontrolled
Crop rotation: yes, no, uncontrolled
Provide a predicate P such that zero tillage yields more than conventional tillage if and only if the
predicate is true. P is less than 15 words.
Format your answer in JSON: {‘P’:‘answer’}

Response:
{‘P’: ‘Irrigated, humid climate, residue retained, crop rotation yes’}
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